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Abstract

A combined experimental-numerical investigation is being conducted to study

dynamic load transfer in particulate materials due to explosive loadings. The primary

emphasis in the study is to relate the microstructural features of the particulate media to

the load transfer process. The experimental technique of dynamic photoelasticity is used

to investigate the effect of cementation and of the particle shape on the local contact

stress fields. The stiffness of the cement relative to that of the particle controls the

location of the peak contact stresses. Strong cementation increases the load transfer

velocity and also promotes fracture of the particles. The particle shapes as presently
0

studied in this research program seem to have little influence on the load transfer process.

The applicability of the fiber optic sensors and the speckle techniques to contact stress

measurements is evaluated. Fiber optic sensors show promise of future applications to

three dimensional problems. Discrete element numerical wave simulation has been

conducted for saturated granular materials through the introduction of a new contact law

using elastohydrodynamic theory. Pore fluid acts to decrease the wave speed and increase

the attenuation. Future numerical studies will focus on additional changes of the

interparticle contact response through cementation and particle shape effects.
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Statement of Work

The primary objective of this investigation is to study the role of microstructure

on the dynamic behaviour of a variety of particulate materials. In particular, attention is

directed towards relating microstructural features including packing fabric, contact

behaviors, and particle shape and size, to wave propagation characteristics of wave speed,

amplitude attenuation, and dispersion.

Status of the Research Effort

In the past year we initiated several different studies and these include: (1)

Relating granular fabric to wave propagational behaviours, (2) Evaluating fiber optic

sensor and applying it to contact strain measurement, (3) Applying white light speckle

photography to displacement measurements, (4) Studying the effect of cementation on the

load transfer phenomenon, (6) Looking at the influence of particle shape on the wave

propagation process. The details of these efforts are presented in the following chapters.
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CHAPTER 1

THE RELATIONSHIP OF GRANULAR FABRIC WITH WAVE

PROPAGATIONAL BEHAVIORS

1.1 Introduction

Because wave propagation in granular materials is locally transmitted through and

across contact regions between adjacent particles, material microstructure or fabric will be

related to the propagational characteristics of wave speed and amplitude attenuation.

Fabric of granular materials can be described as the spatial arrangement of the solid

particles and associated voids. Over the past several years, many fabric measures have

been proposed for granular media, but no unique choice of fabric description has been

universally accepted which can adequately describe the mechanical response of such

media.

Some research has categorized fabric into two types: orientation fabric

(orientation of individual particles) and packing fabric (mutual relation of individual

particles to the others). Orientation fabric may be quantitatively defined by a vector mean

direction and a vector magnitude to characterize orientation of non-spherical or non-

circular particles. This fabric measure is commonally represented by an angular measure

(with respect to a reference direction) of the long axes of individual particles. Packing

fabric measures have included branch vectors, normal contact vectors, coordination or

contact numbers, void characteristics, etc. Examples of these fabric measures are

illustrated schematically in Fig. 1.1. Some of these fabric measures are kinlemnatical in

nature, determined primarily by the particle shape and packing geometry. Other measures

such as those related to the contact conditions are kinetic, and are deternifned by the

particle material and shape properties and also by the contact surface condit,,

Fig. 1.2 shows a photograph of the dynamic photoelastic fringe patterns associated

with an actual wave moving through a model particulate medium containing some of these
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fabric structures. It has been observed for both static and dynamic loading conditions that

particulate materials transmit mechanical loadings along a series of complex discrete paths.

These discrete paths are established, in relation to the loading direction, by many of the

microstructural variables mentioned, and therefore local wave propagation is determined

by granular fabric through the creation of local wave guides.

This section outlines our research which examines the relationship of granular

fabric with the wave propagational variables. The model granular materials under study

will be large random assemblies of circular particles which have been created using one or

more of our random media generator codes. This study focussed primarily on the effects

of packing fabric, including branch vector distributions (which for circular particles

coincide with normal contact vectors), path fabric, and void polygon fabric.

1.2 Branch Vector Fabric

Branch vectors have been used as fabric measures in several previous static

investigations of granular media, and this measure also looks appropriate for wave

propagation problems since dynamic loads are transmitted primarily through contact

points which lie along branch vectors. Thus it seems reasonable to assume that branch

vector distributions could be related to the wave propagational behaviors in such media.

Tu investigate such relationships, several of the large random assembly generators

previosly discussed in an earlier AFOSR report (Shukla and Sadd, 1992) were used to

construct six assemblies x,, i:h different microstructures. These assemblies are named as S-

1, M-1. M-2, W-1, W-2. and W-3. Shown in Fig. 1.3, assembly S-I was generated by the

strongly anisotropic generator. Assemblies M-1 and M-2, displayed in Figs. 1.4 and 1.5.

were constructed by the moderately anisotropic generator. Finally, the weakly anisotropic

generator was used to ck astructe assemblies W- 1, W-2 , and W-3, and they are shown in

Figs 1.6 - 1.8. The total numbers of particles for each of the six assemblies are listed in

Table 1. 1. The void rat il (volume of void / volume of particle) and average coordination
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number N (average contact number per particle) are also calculated and are given in Table

1.1 for the six assemblies. Assemblies S-1 has the highest void ratio of 0.43 and lowest

coordinate number of 2.87, while W-3 has the lowest void ratio of 0.22 and the highest

coordinate number of 4.30.

The branch vectors of these assemblies were then calculated and normalized to

construct unit vectors. To find a load preferred direction, the x-component band y-

component b of each branch vector b were determined and summed over the entire

assembly. Denoting F1 as the ratio of the summed y-components over the x-components

gives

F'= Xni (1.1)

The values of F1 for the six assemblies are listed in Table 1.1. The branch vector angular

distributions (rose diagrams) of the six assemblies are shown in Figs. 1.9 - 1.14. For

assembly S-1 (see Fig. 1.9), all branch vectors are concentrated in the region defined

by approximately ± 300 from the vertical direction. No branch vector is found along the

horizontal direction, and Fb is 2.06 for this assembly. The branch vector distributions for

M-1 and M-2 are shown in Fig. 1.10 and Fig. 1.11, respectively. The branch vectors lie

mainly in vertical and horizontal directions with preference in vertical direction, and both

assemblies have the same Fb ratio of 1.19. Figs. 1.12 - 1.14 show the branch vector

di.itributions for assemblies W-1, W-2, and W-3. The weakly anisotropic assemblies do

n.i shown any significant preferred branch vector distributions. The F" ralios for these

c:iscs are 1.01, 0.9, and 1.01, respectively. Using the discrete element method with a

nonlinear hysteretic contact law, our wave propagation code WAPRI1PM (Wave

P. .•:Jigation in Particulate Media) was used to simulate the wave propagationad behaviors

(wave speed and amplitude attenuation) in the six assemblies under study. The

simulations involved the comparison of the propagation of plane type waves moving along
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orthogonal directions (horizontal and vertical) in the generated assemblies. The transient

input loading was modeled using a triangular pulse with a peak value of 1000 N and a

period of 60 jus. To represent a planar input wave, the time-dependent pulses were

simultaneously applied to particles along one of the horizontal or vertical boundaries of

the assemblies under study. To calculate the transmitted or output wave pulse, an

imaginary horizontal or vertical line was drawn near the boundary opposite to where the

input loadings were applied. If a branch vector of a pair of particles in contact or potential

contact is intercepted by this imaginary line, the normal contact load component

perpendicular to the imaginary line, i.e. either F, or F,, was recorded. In this fashion, the

contribution of the individual particle contacts could be determined, and these recorded

loads were then summed and normalized with respect to the sum of the peak values of the.

input loadings. These normalized contact loads are given by

SF.(t)

_ F,(t)npjt (1.2)

FY FY (1)j

where the summation in the numerator is over the number of branch vectors intercepted by

the imaginary line, while the summation in the denominator is over the number of input

loadings.

Fig. 1.15 shows this wave propagation simulation for the media model S-I. The

normalized normal contact load component profiles Fr,(t) and F,,,,(i) correspond to

vertical and horizontal input loadings respectively, and the ratios of the peak values of the

profiles, denoted by

( I, ( )) (1.3)

F ('))pek



are given in Table 1.1.

For assembly S-1, FY,, is 200.68. It is obvious that a wave propagating along the

vertical direction has much less attenuation than one traveling along the horizontal

direction. Also note that the wave speed as determined by the arrival time of the averaged

profile is different for the two propagational directioi:S, and the ratio of vertical wave

speed over horizontal wave speed is approximately 3. Note that results for the horizontal

wave are not visible because of the scale used in Fig. 1.15. These results follow

qualitatively from the local branch vector distribution diagram in Fig. 1.9. Since most

branch vectors lie along the vertical direction, the load transfer paths in that direction are

rather continuous and straight, while just the opposite would be true for load transfer

paths along the horizontal direction. Therefore, assembly S-1 is an anisotropic medium,

and demonstrates high directionally dependent wave propagation.

The normalized normal contact load profiles for model assemblies M-1 and M-2

are shown in Figs. 1.16 and 1.17. For these assemblies, the discrete element simulations

indicate that the vertical wave attenuation is still smaller than horizontal wave, but these

differences are not as pronounced as in assembly S-1. The wave traveling along vertical

direction was faster than the horizontal wave, but differences between the two wave

velocities is not as large as that for the S- I assembly. Therefore, the degree o0 anisotropy

is larger in assembly S-I than in M-1 or M-2, which agrees with their respective Fb values.

However, the Fb ratio fails to correlate with the anisotropic wave propagational behaviors

of assemblies M-1 and M-2. The ratios of the peak values of the profiles F are 33.33

and 100.02 for M-1 and M-2, respectively, and the ratio of vertical xx',vc speed to

horizontal wave speed for M-2 (1.60) is greater than that for M-1 (1.52). All of these

results indicate that assembly M-2 has higher wave propagation;l ;aiNotropy, but

unfortunately the fabric measure F' of M-2 has the same value as MI- 1. 1hk %•crtical wave

profile in Fig. 1.17 has a small precursor pulse before the main profile. The ieason for this

is that the anisotropy within whole assembly is not uniform. and a small polrtion of the
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total wave will propagate along short paths and will thus arrive slightly ahead of the main

signal. The simulation results for the weakly anisotropic assemblies are showii in Figs.

1.18 - 1.20. The FY. ratios for these assemblies are much smaller than for assemblies M-1

and M-2. They are 1.76 for W-1, 0.94 for W-2, and 1.23 for W-3. Compared with the S-

*• and M-assemblies previously discussed, differences between vertical and horizontal wave

speeds are relatively small for the W-assemblies. This agrees with the local branch vector

distribution diagrams which show that the W-assemblies are weakly anisotropic. Again,

the ratio F1 fails to provide a correlation with fabric and wave behaviors for the W-

assemblies.

1.3 Path Fabric

• When waves propagate through granular media, the local or micro-dynamic loads

are never uniformly transmitted across a sample, but rather are transferred through specific

chains of particles linked through contact. Fig. 1.21 illustrates the contact load

• distribution (the thickness of the lines scaled to the current maximum force) in a particle

bed due to particle impact at the top (Thornton and Randall, 1988). Between these

special chains, particles may carry little or no load. It appears that, by chance, some

sequences of particles offer contiguous paths through the assembly that are straighter than

other possible paths. It is these paths that carry most of the load transfer rather than their

more tortuous neighbors. Thus, within an assembly, if in one direction there are more

contiguous and straight paths than in other directions, the wave should propagate more

* easily in the former direction. This section describes a study of this path fabric effect on

wave propagation.

A path is defined ;ts a set of continuous branch vectors of particles in contact, and

it was observed expenimentally by Shukla et.al. (1988) that dynamic load can be

transferred along the path only when every pair of neighboring branch vectors b, and bi

in the path satisfy the relationship
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br'bj >0, (1.4)

which means that the branch angle qp shown in Fig. 1.22 is less than 900. Therefore, a

transferable or propagator load path can be defined as a series of particles which are in

contact with each other, such that the dot product of any pair of neighboring branch

* vectors is positive.

Within this section, two different methods of constructing a path fabric measure,

based on the straightness of the path, will be discussed. In one method, the dot products

of all adjacent branch vectors in a given path are calculated, and they are used as basic

units to build a path fabric measure. For example, a path fabric between two arbitrary

particles can be expressed as

F 1 (1.5)1 '

where inner summation is over a path connecting the particles and outer summation is

* over all of the possible paths. For the straight chain case, there exists only one path

1
between the two particles, and equation (1.5) gives P, = ,N-I where N is the total

number of particles in the path. On the other hand, if there is only a single path between

two particles in a two dimensional assembly, and if any branch angle in this path equals 90

degrees, equation (1.5) gives FP = 0 . The path will thus become a non-propagator if

b'bi ! 0. and in the following sections, only propagator paths will be included in the

* investigation.

A second method to build a path fabric measure uses x and y branch vector

components instead of the dot product used in equation (1.5). One fabric measure

ceven two points can be written as

• 8



x (1.6)

0' 
P

where outer summations are over all possible paths between the two points, and inner

summations are over individual paths. Equations (1.6), and (1.6)2 are used to describe the

path fabric along the x and y directions, respectively. For granular media simulated by

circular disks of the same size, the value of equations (1.6), and (1.6)2 will not be larger

than the disk diameter, and will equal to the diameter only when the path is a straight chain

along the x or y direction.

Using the first proposed path fabric measure to analyze the microstructure of an

assembly, it is required to find every path between each pair of boundary particles, of

which the input loading is applied at one and output contact load is recorded at the other.

* Since two paths are defined as different if one path includes any particle the other does

not, the number of the paths across an assembly will be very large. Theoretically, all

different paths can be found and I y can be calculated for each path. However, for

large assemblies the total number of paths between two boundary points approach 107 -

108, and considerable CPU time and large memory space will be needed to account for

each path. For example, to calculate the path fabric measure F' between two points

* which lie on opposite boundaries of assembly W-l, takes more than 1 hour of CPU time

(VAXstation 3100). Therefore it appears impractical to use equation 1.5).

One solution to this problem is to divide the whole assembly into several

subregions and use the fabric measure of equation (1.6). Using this scheme a general

assembly

* 9



can be divided into subparts, and Fig. 1.23 shows four such subregions for the calculation

of vertical paths. In this figure, dots stand for the contact points, and the solid polygon line

represents one of many paths, which start at point A', go through points B', C, and D', and

* end at point E'. Equation (1.6) for the vertical paths from A' to E' can be written as

i x 221 (1.7)

where IAT.E is the vector from A' to E'. The summation in the numerator is over all

possible paths from A' to E'. The equation can be further rewritten as

Np•rticle

N,' 
(1.8)

•ý - N ",- IVE71 lY
p ath-A'E'

where Npth-A.E is the total number of paths between A' and E' , and Np•,tzce is the total

number of particles along a path. If the paths are restricted through points B'. C', and D',

* the total number of paths is given by

NpatW_.A'l = N pa.h-A. * Npa gh_ " N parlýCb', Npath,),f- (1.9)

and the total number of particles equals

• l

* 1l l ll ll l ()



Np•acle-= ( NPwgke)" N,,<c" N, oCD," N.a
plýbA'ff

+ ( 7N -N)N -Nwc*" NJYEB

(1.10)
* + ( Npwk)" NPOA NL,,g.c" Npal,,ury

pa ACDI'fcl -D

In Fig. 1.23, taking the bottom subregion as an example, all vertical rom A'

* to B' can be found, and the particle numbers of all the paths are summed. The above

procedure is repeated for the other three regions, and equation (1.8)2 gives the path fabric

measure for all the paths between A' and E' which pass through B', C, and D'. Now let B'

take all points on level B-B, C' take all points on level C - C, and D' take all points on level

D - D, then equation (1.8)2 gives the fabric measure for all paths from A' to E'. The

path fabric measure for the whole assembly can then be obtained by summing the values

given by equation (1.8)2 for all the paths between boundaries A- A and E - E. Similarly,

the horizontal value can be calculated from equation (1.8)1. It should be pointed out that

when a vertical path is under consideration, the path will be discarded if it runs beyond a

vertical zone of fixed width centered at the initiating particle within a subregion. This is

* reasonable since a highly zigzagged path will transmit negligible load, and by discarding

these paths a reduction of computational effort will result.

Using equation (1.8), the vertical and horizontal path fabrics are computed for the

six assemblies discussed in the previous section. The ratios of the summation of vertical

fabric to the summation of horizontal fabric

FP = ,vercal (1.11)

0 horizontIal
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are given in table 1.1. For the strongly anisotropic assembly S-I, there is no contiguous

path along horizontal direction and this gives a ratio of infinity, which correlates with the

discrete element results which show that the horizontal wave is almost blocked. The F'

ratio has the values of 5.88 and 2.08 for the two moderately anisotropic assemblies M-1

* and M-2. Thus, there are more paths along the vertical direction rather than the horizontal

direction, and waves prefer to propagate along the vertical direction in these assemblies as

predicted by discrete element analysis. However, as with the branch vector case, the path

fabric also fails to indicate the stronger anisotropy of assembly M-2 over M-1. The reason

for this lack of correlation may be due to gap closing, which can change the path fabric

significantly. Taking assembly M-2 as an example, during the process of vertical wave

propagation, it appears that more than 40 new contacts have been created. The F" ratios

0 of the weakly anisotropic assemblies W-l, W-2, and W-3 are 0.95, 1.00, and 1.16,

respectively, which indicates that these assemblies are indeed weakly anisotropic.

However, the FP ratio fails to provide a correlation with path fabric and wave behaviors

* for the W-assemblies.

1.4 Void Polygon Vector Fabric

In the previous two sections, fabric measures associated with particles were

discussed. However, besides the solid particle phase, a granular material also consists of

a void phase, and thus it would seem reasonable that a fabric measure based on voids

could be useful to correlate with wave propagation.

• To describe a void with N curved segments, a polygon is used as shown in Fig.

1.24. The polygon consists of the branch vectors linking the particles around a void, and

thus a void polygon represents the relations of this special group branch vectors.

Assuming that a void surrounded by N particles has N branch vectors b, b2 ... , and b. a

tensor can be defined (similar to Konishi and Naruse, 1988) as

* 12



N

*pq - •b•(1.12)

where b,,. and b. are x and y components of bk respectively. The principal values of p. are

1 b2 +* p 1.P 2 "- -~b (b~cos2OkJ+( bksin2OkJ (1.13)

The difference between the principal values is denoted by

H -P 1 - P2  (1.14)

and the major principal direction is calculated as

bsin2()k
O)P --- arctan =-(1.15

2 N

Now the void can be described by pl, p2., and 0.: H - p1 - p. is related to the anisotropy

of the void, S = p1p2 represents the void area, and 0, gives the void direction.

* Konishi and Naruse (1988) constructed a local void vector p whose value is H and

direction is given by 0.. In this study, the local void vector p is defined as a vector

whose magnitude is HS. The reason for including S in the void vector definition is that

when waves propagate through a granular material, the possibility of voids and gaps

closing is related to void size. The void vector direction will also use the measure 0,.

Therefore, voids within a granular mass can be found and the void vectors may be

constructed for each of them.

5 Using this scheme of local void vectors, a rose diagram similar to the branch

vector plots in Figs. 1.9 - 1.14 can be plotted. Figs. 1.25 - 1.30 show void vector

distributions for the six assemblies discussed in the previous sections. An examination of

these plots along with the corresponding branch vector diagrams reveals that void vector

reflects the microstructure more clearly than branch vectors. In the void vector

* 13



distribution diagram for assembly S-i, all the void vectors lie in vertical direction to block

horizontal wave paths, while the corresponding branch vector diagram fails to demonstrate

this. For assemblies M-1 and M-2, void vector rose diagrams show an overwhelming

majority of void vectors lying in the vertical direction. This agrees with the numerical

simulations, while the corresponding branch vector diagrams only show slightly more

branch vectors in vertical direction than in the horizontal. The void vector rose diagrams

for the W-assemblies also indicate preferred wave propagation directions, which was not

apparent in the branch vector diagrams.

The summation of all void vector x and y components can be given by I p, and

py respectively, and thus we can define a ratio

F" =.X .Y (1.16)

which can be used to measure the anisotropy of a medium. The values of F' for the six

assemblies are given in Table 1.1. This ratio increases with the degree of assembly

anisotropy except for assemblies W-2 and W-3, and it obtains a maximum value of 85.08

in assembly S-I, indicating a strongly anisotropic medium. For moderately anisotropic

assemblies M-1 and M-2, the ratio decreases to 2.44 and 2.55 respectively, which

successfully predicts a stronger anisotropy for assembly M-2 over M-1. The values of F"

for the weakly anisotropic assemblies W-1, W-2 and W-3 are 1.12, 1.05, and 1.00,

respectively. F" correctly indicates that the degrees of anisotropy in W-2 and W-3 are

weaker than in W-1, but as with the other fabric measures it fails to Point Out W-3 has the

smallest degree of anisotropy among the W-assemblies. Thus, it can be concluded that the

void fabric measure correlates with the wave propagational behaviors of particulate

materials better than the branch vector or/and path fabric schemes discussed in the

previous sections.
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Assembly Particle Number Void Ratio Fy, Fb F' Fv

- S - 1 822 0.43 2.87 200.68 2.06 no x-path 85.08

M -1 778 0.28 3.43 33.33 1.19 5.88 2.44

M - 2 854 0.28 3.41 100.02 1.19 2.08 2.58

W - 1 1042 0.25 4.17 1.76 1.01 0.95 1.12

W - 2 1296 0.25 4.04 0.94 0.99 1.00 1.05

W -3 1338 0.22 4.30 1.23 1.01 1.16 1.00

Table 1.1 Various Fabric Measures with Density and Coordinate Number for Six Assemblies
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I Fig. 1. 5 A Moderately Anisotropic Granular Assembly (M-2)
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Fig. 1.7 A Weakly Anisotropic Granular Assembly (W-2)
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Fig. 1.9 Branch Vector Distribution of Assembly S-I
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Fig. 1.11 Branch Vector Distribution of Assembly M-2
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* Fig. 1.13 Branch Vector Distribution of Assembly W-2

•

yi- 1 1- Branch Vector Distributiwn of .'\sscnlbl\ \,

0 22



NORMALIZED CONTACT LOAD VS. TIME

0.3 1 1

S- horizontal
0 . vertical

0.2
o Ii

z f

i.. 0.1

* N ;

0

zZ

* -0.1 , i

0 500 1000 1500 2000 2500

TIME (MICROSECOND)
Fig. 1. 15 Normalized Contact Load vs Time for the Assembly Shown in Fig. 1.3

0.05

horizontal
o 0.04 •vertical

.< 0.03
SHE- z

CDCD o02

o 0 O0
0".0

Fig. 1.16 Normalized Contact Load vs Time for the Assembly Shown in Fig. 1.4

23



NORMALIZED CONTACT LOAD VS. TIME

0,05 ,

: horizontal
o 0.04 vertical
E-3

.< 0.03
E-,Z

0
) 0.02

*N "0.01
<I ,

o 0.00
z

* -0.01 , , i
0 500 1000 1500 2000

TIME (MICROSECOND)
Fig. 1.17 Normalized Contact Load vs Time for the Assembly Shown in Fig. 1.5

NORMALIZED CONTACT LOAD VS. TIME

0.02 i I

- .horizontal

o vertical

*0 0

0

0.00

TIIMIF (M IC}-():EC()ND))

Fig. 1. 18 Normalized Contact Load vs Time for the Assembly Shown in 1ig. i.6

24



NORMALIZED CONTACT LOAD VS. TIME

0.02 *

- horizontal
o vertical
E-a

*u
.< 0.01

0

0 N
0.00

0z

-0.01 ,

500 1000 1500 2000 2500

TIME (MICROSECOND)
Fig. 1.19 Normalized Contact Load vs Time for the Assembly Shown in Fig. 1.7

NORMALIZED CONTACT LOAD VS. TIME

0.02

horizontal

0 vertical

I< 0 01

0

0 N'-- 0.00

Fig. 1.20 Normalized Contact Load vs Time for ith Assembly Shown in Fig. 1.8

25



time 0565 ms max. contact force - 846N

Fi.12 vancLa r0se Pts(hrtnadRnal 98

S2



Fig. 1.22 Definiton of Branch Angle (p

E E E

• -.... 0.,a ..

JF7W -0 --0 - W w

0C Bwq* _o._eA@ w -o-o-- r-u-

path

SB 
m l _. o _ _O_*0 0 A__ __ _ B

A • •w• A

A'

Fig. 1.23 Subregions Of An Assembly

0x

(I

* 
b

Fig. 1.24 A Void With Associated Particles And A Replaced Pokgon

* 27



0

Fig. 1.25 Void Vector Distribution of Assembly S-I
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Fig. 1.27 Void Vector Distribution of Assembly M-2
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Fig. 1.29 Void Vector Distribution of Assembly W-2
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CHAPTER 2

0 EVALUATION OF A FIBER OPTIC SENSOR FOR STRAIN

MEASUREMENTAND PRELIMINARY APPLICATIONS

TO CONTACT MECHANICS

2.1 Introduction

* In this chapter, an attempt has been made to study the applicability of both

attached and embedded fiber optic sensors to measure in plane and out of plane strain due

to contact loadings. Both two and three dimensional experiments have been conducted.

* Prior to applying fiber optic sensors to contact mechanics problems, they were evaluated

to determine the maximum strains that could be measured reliably. In the past, resistive

foil strain gages have been used successfully to evaluate contacts in both static and

* dynamic problems (Xu and Shukla, 1993). However, strain gages are limited in their use

to surface strain measurements. Also, they cannot be easily bonded to certain kinds of

materials like rock and concrete. Fiber optic sensors on the other hand can be used for

• both surface (Sirkis and Taylor, 1988) and interior strain measurements (Murphy et. al.,

1989). Fiber optic sensors have also been shown to be applicable for use in electrically

noisy environments (Griffiths, 1991), and in high temperature areas (Wang, 1992). The

ultimate aim of the study is to accurately predict local strains at any point in a three

dimensional body for both static and dynamic loading.

• 2.2 Sensor Construction

2.2.1 Mach-Zehnder Interferometer
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Construction of a Mach-Zehnder sensor is quite simple, and a schematic of the

setup is shown in Fig. 2.1. A laser beam is split with a beam splitter and the two resulting

beams are then coupled into two separate single mode optical fibers. One of the fibers is

chosen as the reference path and the other fiber becomes the sensing arm. The two

separate beams are then recombined and the resulting interference pattern is projected

onto a photodiode. The interference fringes produced can be related to the axial strain

seen by the sensor.

In operation, the fringe pattern remains stationary when the sensor undergoes no

strain and the output from the photodiode is constant. When the sensor experiences axial

strain, the fringe pattern shifts across the face of the photodiode resulting in a sinusoidal

type output. It is this sinusoidal output that can be related to the applied strain.

Care must be taken with the Mach-Zehnder interferometer because all of the fiber

in the setup has the potential to affect the light propagating through it. In other words, the

entire length of fiber, in either arm, can be the sensing element. Care must be taken to

ensure that only the desired measurand is affecting the output signal. This is one of the

drawbacks to the sensor and therefore, it is not easily applicable to field -Ipplications.

2.2.2 Fabry-Perot Interferometer

Fig. 2.2 shows a schematic of an extrinsic Fabry-Perot sensor. ' he experimental

setup is almost the same as that for the Mach-Zehnder and is shown in Fig. 2.3. The

schematic of the actual sensor, Fig. 2.2, shows two pieces of optical fihci that are bonded

into a glass tube. The fiber ends are partially mirrored to provide the necessary reflections

for a low finesse Fabry-Perot cavity. Fiber diameter that is used in the li:boratory is 125
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microns due to the availability of the appropriate couplers and equipment for this size

fiber. Purchasing ready made sensors is quite expensive and since the sensors may

become damaged during experiments, a simple method to manufacture them was needed.

Since this sensor is an interferometric sensor, a single mode fiber rated to carry

the particular input wavelength is used. A helium-neon laser is used in the laboratory so

the single mode fiber is purchased to support the 633 nm wavelength. Approximately 0.5

m of single mode fiber is cleaved for the sensor. The competed sensor is later coupled

to the experimental setup using Norland Lab Splices. The fiber that provides the opposite

mirrored surface is a multimode fiber because of its lower cost. This fiber only needs to

be long enough to insert into the glass tube but is generally cut to approximately 50 mm

for ease of handling.

The mirroring is done with sputtering equipment and aluminum is used to create

the mirrors. The fibers are first carefully cleaved and cleaned to provide a flat surface

upon which to sputter the aluminum. Sputtering times may vary with equipment so a glass

slide is first placed in the sputterer to determine an appropriate time. Reflectivity should

be approximately 25% on the single mode fiber and from 25% to 100% on the multimode

fiber.

After the fibers were coated, the glass tube was prepared. A short length of glass

tubing, approximately 25 mm, was cut and one end cleaved flat. The tubing measured 135

microns on the inside diameter and 190 microns on the outside diameter. Both the

prepared tubing and one of the coated fibers were placed into a jig that was developed

to allow alignment of the fiber and the tube under an optical microscope. The jig is

shown in Fig. 2.4 and consists of an X-Y positioner with Z translation and a mirror
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holder/positioner that is used to allow the fiber and the tube axes to be made parallel.

This jig was angled, with respect to the horizontal, to allow viewing of the tube end while

the fiber was being positioned for insertion. This open tube end always faces up and is

located over the small white reflective surface to provide back-lighting.

The first fiber was inserted into the prepared end of the tube and bonded using a

five minute epoxy. The fiber was inserted so as to achieve the desired gage length and

to allow approximately 10-40 microns between coated fiber ends when the sensor was

completed. After the epoxy was cured, the tube was cleaved again to the desired gage

length, the second fiber was inserted and positioned for the correct gap, and the epoxy

was applied to the second fiber. Once the epoxy has cured, an accurate measurement of

the finished gage length is made under the microscope, and the sensor is ready for use.

2.3 Calibration

The principle of operation of a Mach-Zehnder interferometric fiber optic sensor

was mentioned above. The axial strain, e,, is directly proportional to the number of

fringes, N, moving past a fixed point and can be given as (Butter and Hocker, 1978)

e,=DN (2.1)

v• hue D is the proportionality constant and can be written as

t. is the vacuum wavelength of the optical beam, I is the gage length of the sensor,

n is the refractive index of the fiber, and c is a constant which depends on strain optic

coefficients, the refractive index, and Poisson's ratio of the fiber. It is possible to
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calculate D for pure silica, however, dopants are used to alter the refractive index of the

core of the fiber to keep the light propagating in the fiber. Hence, the fiber has to be

calibrated to determine the constant D.

The Mach-Zehnder sensor was calibrated using a cantilever beam setup as shown

0 in Fig. 2.5. The fiber sensor was mounted to a cantilever beam, opposite a conventional

strain gage. The beam was displaced and a plot of the axial strain recorded from the strain

gage vs. the fringes was made for a particular gage length of the fiber. A straight line was

fit through the data points. The slope of this straight line was the constant D as shown

in Fig. 2.6. The strain required to cause one fringe to move across a fixed point is

(2.3)

inversely proportional to the gage length of the sensor. In other words, equation (2.1) can

be written as shown in equation (2.3) where A is the fringe strain sensitivity constant for

the sensor. The fringe strain sensitivity can be defined as the strain required to cause one

fringe to move across a given point for a unit gage length of the sensor. The

experimentally obtained value for A was found to be 625 umm/mm fringe' mm.

Strain is obtained from the Fabry-Perot sensor in much the same way as the Mach-

Zehnder sensor. However, the relationship between the number of fringes passing and the

strain is only dependant on the wavelength of the light propagating and the gage length

of the sensor. Calibration of the sensor is not necessary. The relationship between the

fringe shift and the axial strain is explicitly given by equation (2.4). Again, N is the

number of fringes, X is the wavelength of light, and L is the measured gage length of the
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sensor.

EX = XN (2.4)
71

* 2.4 Evaluation of the Fiber Optic Sensor

2.4.1 Tension Testing

The Mach-Zehnder sensor was used for the initial evaluation of the fiber optic

sensor. A single mode fiber with an outer diameter of 80 microns was stripped of its

plastic jacket in the region that was to be bonded to the specimen. The plastic jacket must

be stripped to ensure proper strain transfer between the specimen and the optical fiber.

Also, the surface of the specimen must be treated in accordance with conventional strain

gage techniques prior to attachment. Two pieces of tape were placed on the specimen

leaving the desired gage length exposed between the tape pieces. These tape pieces serve

as masks so that only the desired length of fiber will be bonded. The tape mask was then

sliced along the direction that the fiber will run. This was done to allow the tape to be

removed after the fiber is bonded. Fig. 2.7 shows the specimen with the tape mask in

place. The fiber was then laid into the slice and bonded. After the adhesive cures, the tape

is removed.

A simple tension test was used to characterize the fiber sensor under axial loading

conditions. A schematic of the setup for the Mach-Zehnder interferometer was shown in

Fig. 2.1. The specimen was a dog bone specimen with a resistance type mr::in gage

bonded to one side of the specimen and the fiber-optic sensor bonded to the otiher side,

directly opposite the strain gage. The experiments were designed for axial strain
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measurements only. To standardize the bonding procedure, both sensors were bonded with

* M-Bond 200, a cyanoacrylate based adhesive, using the technique described in

Measurements Group Bulletin 309A. Ambient conditions in the laboratory are maintained

at 21"C, ± 3, and 65% relative humidity, ± 5.

* The specimens were then loaded at a constant strain rate and the strain gage signal

was recorded, along with the light intensity signal from the photodiode, with a Lecroy

data acquisition system. In each experiment, loading was continued until failure of either

the strain gage or the fiber-optic sensor.

Another series of experiments was conducted in which the specimen was loaded

in incremental values from an unloaded condition to a failure condition. The specimen

was unloaded and removed from the fixture at 500 microstrain increments and taken to

an optical microscope for inspection. The specimen was examined and photographs were

taken of any significant changes in the adhesive bond. After reconnecting the two sensors

to the data acquisition equipment, the specimen was strained to the next incremental value

and the procedure was repeated.

Fig. 2.8 shows typical output from the strain gage and the Mach-Zehnder sensor

for the axial loading experiments. The strain data from both the strain gage and the fiber

sensor is shown in Fig. 2.9.

It can be seen that the Mach-Zehnder sensor was linear and the sensor can be used

for strain measurements. However, the fiber-optic sensor was found to fail at strain levels

far below the levels at which conventional strain gages fail. Failure modes could be

characterized in two ways:

the fiber fractures and the sensing signal is lost.
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the fiber delaminates with matrix cracking, resulting in a change in

* effective sensor gage length.

Note that the delamination and matrix failure is related to the bonding of the fiber and

does not represent a shortcoming of the glue. A separate experiment was conducted with

* only a thin layer of glue and the glue did not show cracking or failure during the

experiment. The maximum value reached during this experiment was 2 percent strain.

The data presented in Fig. 2.9 shows failure by fracture of the fiber which resulted

in loss of the sensing signal and therefore, loss of the interference fringes. Both modes

of failure produced unusable data at values between 1.2-1.8 percent strain. Photographs

taken during the incremental loading are shown in Fig. 2.10. Fig. 2.10(a) shows the fiber

in an unstrained state and as it appears up until failure. The bright line running down the

center of the fiber is the contact between the fiber and the specimen. Note that the glue

does not cover the entire fiber but rather forms a bed under the fiber.

In Fig. 2.10(b), the delaminated region shows up as a wide, bright band. This is

caused by the defracting of the microscope light from the air gap that opened up between

the fiber and the specimen. Under actual observation the band appears as colored fringes.

Note also that the glue matrix shows cracking. These cracks will always curve toward the

portion of the fiber that is unattached and unstrained, and therefore show that

delamination has occurred from left to right in the photograph. The right side of the

photograph shows the portion of fiber that has not yet delaminated.

Fig. 2.10(c) represents an experiment in which the fiber fractured. There is a

central crack in the matrix that is aligned with the fracture in the fiber. All other cracks

curve toward the fracture area. This matrix cracking shows that subsequent delamination
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of the fiber occurred after the fracture and ran outward from the fiber fracture in both

directions.

Fig. 2.11 shows strain data obtained from the incremented experiment. The strain

gage data was plotted using a linear regression curve fit. The data shows that the

specimen remained linearly elastic throughout the experiment. The first run, represented

by the circles, and the second run, represented by the inverted triangles, was made up to

1 and 1.5 percent strain, respectively. Following the second run, observation of the fiber

sensor showed delamination, see Fig. 2.10.

Analysis of the raw data showed the effect of the delamination on the fiber sensor

output. Fig. 2.12 shows an anomaly that occurred at approximately 13,200 microstrain,

during the 2nd run. The fringes from the 1st run, where no anomaly was seen, and those

that precede and follow the anomaly in the 2nd run, are regular and do not appear

distorted.

Since the strain calculation, given in equation (2.1), is based on the gage length,

the observed strain will be affected if a change in gage length is not accounted for. This

affect can be seen in Fig. 2.11, runs 3 and 4. Runs 3 and 4 were made up to 1.6 and 1.7

percent strain, respectively. Fringes from both of these runs shov d numerous anomalies.

From these observations, it is believed that the initial delamination occurred at the

end of the second run and the damage grew during the 3rd and 4th runs. This damage

growth is illustrated by the difference in strain observed in those runs.

From the initial failure experiments, it was determined that the fiber sensor

typically failed at strains around 1.5%. The first strain level at which to stop was set at

1% strain, or 10,000 microstrain. In all experiments, the sensor showed no significant
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changes before reaching this strain level. The 500 microstrain increment was then

* followed until failure.

From these characterization experiments it was determined that fiber optic sensors

could be confidently used up to a strain level of 1.5 percent.

2.5 Experimental Procedures for Contact Strain Measurements

The first set of experiments was aimed at applying fiber optic sensors to measure

strains due to a static load. Disks 32 mm in diameter were machined from 6 mm thick

plexiglass sheets. A fiber-optic Fabry-Perot strain sensor was bonded to the surface of the

disk, close to the point of the applied load. The disk was then loaded in compression and

0data was collected from a PCB load cell and a photodiode using a Lecroy data acquisition

system. The disk was loaded to approximately 1000 N.

The second set of experiments were designed to measure out of plane strains in

a disk using the same loading configuration as that used with the Fabry-Perot, however,

a Mach-Zehnder sensor was used. A 2 mm hole was drilled through the thickness of the

disk. The jacket on the fiber was removed and the fiber was embedded through the

thickness using a chemical called Envirotex, whose mechanical properties are very similar

to those of plexiglass.

Again, a piezoelectric load cell placed directly below the disk was used to acquire

the loading data. From theory, strains can be calculated at any point on the disk if the

load is known. As mentioned, the fiber was embedded on the loading axis and close to

the contact point so that Hertz equations could be utilized for the analysis. A Ltcroy data

acquisition system was used to record both the fiber optic and load cell signals.

* 40



For the three dimensional experiments, 25.4 mm plexiglass spheres were embedded

* with a fiber, utilizing the Mach-Zehnder sensor, through a 2 mm hole. The experimental

procedure was the same as that for the disks with the embedded fiber.

* 2.6 Theory

2.6.1 Two dimensional strains

The stress field equations for a disk are given in (2.5), (2.6), and (2.7) (Smith and

0 Liu, 1953).

Ozz =Z b[z(boj - X0 2 ) + P3Z2 4 2] (2.5)

b [b 2 + 2z 2 + 2x 2 01- 2n - 3x0)R7- -_ b -5-

+ 13 (2x2 - 2b 2 - 3z 2))0 2 + 2-x (2.6)

*+ 2 (b 2  
X2 - Z)X4

* b 0-202 + P W + 2x 2 + 2Z2) (2.7)

2n - 3X4~ 2 )

The terms 0, and 02 are given by the following

E L(M + N) n (M -N)

MN'2MN + 2x 2 + 2Z 2 - 2b 2  PN•N2MN + 2X 2 + 2z 2 - 2b 2

M -= (b+x)2 +Z 2  N = (b-x) 2 + z2

The term A is a parameter that is dependant on the material elastic properties, E and v,
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and the radii of curvature of the two objects in contact, and is given in equation (2.8).

• 1 (1-v + _V2

_ __ - 2 1 ) ( 2 . 8 )

21 2 R2

* The friction factor, 1, is taken to be zero because there is no tangential load and

the half contact width, b, is found using the load data and given by equation (2.9).

*b = N (2.9)

The strain along the loading axis, =,., is given by equation (2.10).The assumption

of plane stress conditions, cry=0, has been made due to the geometry of the disks and

equation (2.10) reduces to equation (2.11).

E =...(a..' - V (OX + (A,,) (2.10)

E = , - v (a.)) (2.11)

Equation (2.11) is the theoretical strain on the surface of the disk given the

geometrical conditions and the load.

From theory, the transverse strain, tyy, is given by equation (2.12).
01

,YY = _•(cYi, - v(JXx + ozz)) (2.12)

Again, a plane stress assumption is made given the disk geometry and (2.12) is

reduced to (2.13).
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*. = -. + 'U.) (2.13)

To summarize, if the load is known and the geometry of the two bodies in contact

is given, the surface strain, equation (2.11), and the transverse strain, equation (2.13), can

be calculated.

If the fiber is far away from the diametrically opposite side, the effect of the load

from the opposite side is relatively small and this has been shown in Fig. 2.13. This plots

shows the percent error in the calculation of transverse strain, Fyy, as a function of the

normalized position of the sensor.

2.6.2 Stress in a sphere

Johnson (1985) presents equations for the stresses along the z-axis in a sphere.

These equations are

Cyr =00 =P )1V -tna+1(+Z (2.14)

Z0 --P 1+z- (2.15)

The terms in these expressions are given in the following equations.

a=( 3pl/ (2.16)

0 The effect of superposition from the diametrically opposite load was neglected for
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_ - R+ (2.17)

1 1-v 1
2 1-v 2 (2.18)

le _= 3P

P-- (2.19)

0 the reasons stated above in the theoretical derivation for a disk under diametral

compression.!

2.7 Results and Discussion

From the results, it is seen that the Mach-Zehnder fiber optic sensor can be

embedded in bodies and used to record strains. Fig. 2.14 and 2.15 are theoretical plots of
0

expected strain values and expected number of fringes for varying loads and varying the

position of the embedded sensor on the z-axis. Fig. 2.16 and 2.17 show a comparison of

the experimental and theoretically obtained strain values for the disk experiments. Fig.

2.18 shows the typical outputs of the fiber optic sensor and the piezoelectric load cell.

Fig. 2.19 is a plot of the experimental and theoretical half contact width vs. the contact

load. A consistent deviation in the slope of the theoretical and experimental plot was

observed in all the experiments using the Mach-Zehnder embedded in disks. A number

of reasons for these errors were explored and are listed below:

improper measurement of the gage length of the fiber. Due to the nature

of embedding, the measured value of embedded length of fiber, or in other

* 44



words the gage length, might not be accurate because the effective load

* carrying length of the fiber is dependent upon the embedding technique.

the equations used to compute the strain were based on infinite elastic half

spaces with a Hertz contact area. An attempt to include the effect of the

0 force being applied at the diametrically opposite side was made based on

the work in Johnson(1985). A concentrated force was assumed for the

opposite side and the superposition principle was applied. The theoretical

plot of the expected error is shown in Fig. 2.13. The superposition of the

opposite force did not contribute significantly to the strain computations.

* the Mach-Zehnder sensor yields an average value of the strain over the

embedded length but the theoretical equations are valid for a point on the

body. The development of an integral expression for strain along the

embedded length might produce more accurate results. Another alternative

would be to use a "point" sensor, such as a Fabry-Perot sensor, because of

its ability to measure strain within a small gage length.

the presence of air bubbles in the filling compound might have altered the

effective gage length.

Fig. 2.20 shows the data obtained from the Fabry-Perot sensor attached to a disk

under diametral compression. Again, the theoretical line was obtained using load data

from the load cell and applying Hertz contact theory to calculate the strain at the sensor

location. The plot shows agreement with the theoretical prediction within 14%.

Predicting stress and strain profiles in three dimensional bodies is an order of
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magnitude more complicated. For the three dimensional experiments, a sphere, which is

• the most simple representation of a 3d body, was used as the specimen and a fiber was

embedded using the same process as for the disks. To avoid numerical procedures, strains

were computed for a point along the z-axis.

0 As was the case in disks, a very significant deviation in slope was observed

between the theoretical and experimental values of strain. Once again, the experimentally

obtained value of strain is the average value of strain along the embedded length where

as the theoretically obtained values are for a point on the z-axis. In a sphere, the strain

increases in magnitude from the free surface to a interior point on the z-axis(Johnson,

1985). Perhaps an arithmetic mean of the theoretical strain would afford better comparison

with the experimentally obtained value of average strain along the embedded length.

Fig. 2.21 shows the characteristic fiber optic and load cell output for a sphere

under compression. The theoretical equations are non linear and a slight amount of non

linearity was observed in the strain vs. load plots as seen in Fig. 2.22.

2.8 Conclusion

The Mach-Zehnder fiber-optic sensor measured axial strains with acceptable

accuracy and these strain measurements have been shown to be linear up until the failure

point of the sensor. This failure point, using the technique described in this paper, has

been shown to be much lower, typically 1.2-1.8 percent strain, than that taken to be

accepted maximums for attached resistance type strain gages, 3-6 percent strain. Failure

has been shown to be either due to fiber fracture or delamination and glue failure. For

applications in our laboratory, this upper limit of measurement is above the strains
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encountered. Experiments were also conducted in which the entire fiber was covered with

* glue. Covering the fiber entirely with glue produced fiber fracture only. The glue showed

cracking at the fiber fracture point and the failure strains were comparable with the values

presented in this paper.

* The Mach-Zehnder sensor can be embedded through bodies to measure strains.

The strains predicted by the sensor are an average over the gage length and can only

approximate the actual strain value at a unique point. The technique used to embed the

fibers is critical for accurate prediction of strain values. The experiments using the 32 mm

diameter disks proved that transverse strains due to Poisson's ratio effect can be

approximately predicted by these sensors. Sub surface strains in spherical bodies under

diametral compression can also be predicted by Mach-Zehnder fiber optic sensors.

However, the value of the strain predicted is an average strain over the embedded length

of the sensor. This strain prediction is very large when compared to the theoretical strain

at a point inside of the sphere. For comparison to the theory, a more suitable sensor

would be the Fabry-Perot interferometric sensor.

Fabry-Perot sensors have been shown to be applicable for determining contact

parameters. The sensor was within 14 percent agreement with the theoretical values.

The mechanisms of failure described for the Mach-Zehnder sensor are speculated

to be indicative of those for the Fabry-Perot sensor. However, preliminary work has

shown that there is a dependance of the failure strain on both the diameter and the

material properties of the glass tube used in constructing the Fabry-Perot.

This chapter represents preliminary results of contact strain measurements using

fiber optic sensors. The work will be contiunued in the coming year.
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Figure 2.1. Schematic of the experimental setup for the Mach-Zehnder sensor.
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Figure 2.2. Schematic of the Fabry-Perot sensor.
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CHAPTER 3

APPLICATION OF WHITE LIGHT SPECKLE PHOTOGRAPHY

TO MEASURE RIGID BODY DISPLACEMENTS

AND DEFORMATIONS

This chapter presents the technique of white light speckle photography with the

* intention of using it to measure displacements around contacting particles. Results from

preliminary experiments are also presented and discussed.

*0 3.1 Introduction

3.1.1 History of Speckle like Phenomena

When a beam of light is passed through an isotropic transparent medium, light is

* scattered from each point along its path. This scattering process occurs because of

inherent optical roughness, in other words, small particles in suspension inside the

material. This scattering of light is very essential for the working of the speckle

0 technique. The history of speckle like phenomena predated the laser but engineering

application of speckle techniques started only after the development of the laser. The term

'speckle' originated as a result of holography when dark spots tf destructive interference

were observed in holograms. All the speckle techniques differ only in the nature of the

speckle pattern generation. A double exposure of the speckle pattern, one before

deformation and one after, is a common denominator to all spL, lie techniques. Leendertz

* (1970) established the foundation principles of speckle interferometry. Archbold and

Ennos (1972) and later Duffy (1974) proposed a different technique known as speckle
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photography which involved the use of a single divergent laser beam and recording

* double exposed photographs of the speckle patterns. Barker and Fourney (1976) showed

the successful use of this technique for interior displacement measurements. Of late,

speckle photography using ordinary whitelight has been developed by Chiang (1979,

0 1980, 1990) and Asundi (1982, 1983) which has opened a wide range of possibilities for

the application of this technique.

3.2.2 Formation of 'Speckle'

When light from a coherent source such as a laser falls on an optically isotropic

medium, scattering of the laser light occurs due to the optical roughness of the medium.

This scattered light travels different paths and hence they interfere with each other

forming bright and dark spots of constructive and destructive interference giving a speckle

like appearance. These spots are called 'speckles'. This scattered light speckle pattern acts

like a random grid and if the deformation is sufficient to cause a shift of the speckle

pattern by at least one speckle diameter, the double exposed speckle pattern will behave

like a complex diffraction grating. Speckle size can be calculated using the Rayleigh

criterion. This gives an average diameter in the image plane of s=1.2kF (Barker and

Fourney, 1976) where F is the aperture ratio of the lens. Corresponding speckle size in

the object is given by

1.2XF (3.1)
m

where m is the magnification.
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3.2 Speckle Techniques

• 3.2.1 Speckle Interferometry

When two optically interfering beams of light are used to generate a speckle

pattern, the technique is called speckle interferometry. The two sources of optically

interfering beams can be a laser in combination with an appropriately placed mirror which

causes a phase difference necessary for interference.

0 3.2.2 Speckle Photography

Speckle photography uses a single beam of light to generate a speckle pattern.

When a laser is used as the source of light, a speckle pattern is generated due interference
S

between the scattered light inside the material. This technique is called laser speckle

photography. When a speckle pattern is artificially created and ordinary light is used, it

is called whitelight speckle photography.

3.3 Theory of Fringe Formation in Speckle Photography

Speckles are formed due to random interference of coherent light from different

scattering sites within the propagating medium. The intensity of an individual speckle is

independent of the intensity of the illuminating light and depends only on the relative

phase of the light from each scattering site within a speckle cell. Hence, it is unimportant

if the phase of the illuminating light or the light scattered from each speckle cell changes

between exposures due to material birefringence or deformation of the body. The double

exposed negative of the speckle pattern or specklegram, as it is called, behaves like a

complex diffraction grating. When a laser light is passed through this grating, light is
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scattered into a diffraction halo with intensity varying across the field. The diffraction

pattern is due to the product of the diffraction halo of a single speckle pattern and the

intensity distribution generated by two point sources spaced a distance apart equal to the

image shift. Sensitivity is governed by the Rayleigh's criterion and the maximum

displacement that can be measured is governed by speckle pattern correlation. Excessive

deformation moves new scattering sites into and old scattering sites out of the

illuminating light. Decorrelation can also occur due to a displacement gradient normal to

illuminating sheet.

The basic optical configuration incorporating a single beam laser speckle method

can be described as follows. An object surface is illuminated by a laser beam. The

location of the light source is denoted as S and P is a point on the surface of the

illuminated body. The recorded light intensity of the first exposure is (Kobayashi, 1987)

it = B(x,y) (3.2)

If the body is deformed between exposures, the image on the film plane will be

shifted to new coordinates x' and y'. The light amplitude in the deformed configuration

may be written as

1, -= B (x, y') (3.3)

The surface displacement vector PP' may be expressed as

Then the film plane displacement vector can be written as
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PP' = ue + ve + we (3.4)

PP% I f- = P + y)] (3.5)

where m is the magnification of the lens.

0 Coordinates of the film plane for the second exposure are x= x + uf and y = y

+ vt Now the expression for the total intensity is expressed as

. = B 2(x,y) + B 2(x + uf,y + vf) (3.6)

Interference fringes are obtained by taking optically the Fourier transform of the

amplitude transmission function of the processed photographic negative. The amplitude

* transmission function g(xy) is assumed linear in the ranges of interest and may be

expressed as

g(x,y) = a + bI,,, (3.7)

where a and b are constants.

It can be proved that the intensity in the transform plane can be written as

* I(~,•) -= C[(l+cos(zuf))] (3.8)

where C is a constant and w is the spatial frequency variable and is denoted as

w = qe. + qeYS (3.9)

and

KX KY (3.10)

-d= d

where X", and Y, are the coordinates in the transform plane and K = 2nt/I.. Fringes will be
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defined when I(w,1 o,) = 0 i.e when 1 + cos(wou) = 0.

For a small region of illumination, the displacement is assumed constant and

fringes are formed when

wu% = (2n - 1)n n = 1,2,3... (3.11)

In general, only the first fringe is observed i.e n = 1, therefore written as in equation

(3.12), where d is the distance between the transfop plane and the specldegram.
Xu1 , + Y vf = (3.12)

To find the component of displacement along Y, we take Xs = 0 and we get vg

= X4d/2Y, and similarly uf = %d/2X,. Now the magnitude of total displacement is given

* by

S(3.13)

* Substituting values of the components, we get U as equation (3.14),

U=._._ (3.14)

where S can be calculated as shown in equation (3.15).

S = (3.15)

In case of a magnification while recording the specklegram, U should be written as

U= mtd (3.16)
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3.4 Experimental Procedure and Data Analysis

0 In all speckle techniques, a double exposure of the speckle pattern is made, one

before deformation and one after, on a special kind of film called the litho ortho type.

These litho films are a go-nogo kind of film which means that beyond a certain intensity

threshold, they will print as black and below the threshold, they do not print at all. In the

case of laser speckle, a laser source is used to generate the speckle pattern. In the case

of whitelight speckle, light from a Tungsten filament can be used to project on the

artificial speckle pattern. Fig. 3.1 shows the schematic for recording a whitelight

specklegram. These artificial speckle patterns can be a rough surface, white paint sprayed

on a black base or a coating of retroreflective paint. For interior measurements, glass

beads can be mixed while casting the material. A double exposure of this speckle pattern

is recorded, one before deformation and one after deformation. This double exposed

speckle pattern is called a specklegram. Data analysis can be done by applying either the

pointwise filtering technique or the whole field filtering technique. When a laser beam

is passed through any point inside this specklegram, Young's fringes are seen. This is the

pointwise filtering technique. The spacing between the fringes is related to the

displacement of the point of interest as shown before and is given by equation (3.14). Fig.

3.2 shows this analysis setup which is called the pointwise filtering technique. When an

* optical filter with a pin hole is used for analysis of the specklegram, whole field

displacement information can be obtained. In this case, isothetic fringes or fringes of

constant displacement are seen and the analysis is termed whole field filtering. The former

technique, though tedious, is more precise and can be automated. A computer in

combination with a digital filter and a CCD sensor can be used to filter the noisy speckle
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data and give accurate displacement values at different points in the model (Chitsaz and

* Moslehy, 1989).

3.5 Results and Discussion

0 Experiments were done to measure the surface displacements at various points in

a plexiglass disk of 63.2 mm diameter subjected to rigid body displacement. The disk was

painted black and then sprayed white to give a speckle pattern with an average speckle

size of around 100 pm. The disk was then mounted on a horizontal translator which in

turn was mounted to an optical bench. 2X90 W Tungsten lamps were used to project light

on the specimen. Double exposure of the speckle pattern was made on a Kodalith ortho

type 3 film using a 4"X5" field view camera. In between the double exposures, a rigid

body displacement of 400 #m was given to the specimen. The film was developed in

Kodalith Super-RT developer. The specklegram was analyzed using the pointwise filtering

technique. A 1 mW He-Ne laser was used for the analysis. Fig. 3.3 shows typical

Young's fringes and Fig. 3.4 shows the displacements calculated at various points on the

body. The calculated displacements compare well with the actual displacement of 400 pIm.

Most of the measured displacements lie within 10% accuracy. Accuracy could be

improved considerably by increasing L, the distance between the laser/specklegram and

the viewing screen, especially in the case of manual measurement of fringe spacing, S.

Experiments were also done using 25.4 mm diameter plexiglass disks under

diametral compression using the crosshead of an Instron machine. The speckle generation

was the same, but the fringe formation was extremely hazy and unclear making data

acquisition virtually impossible.
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Experiments were also done with embedded speckles. A three dimensional body

* was made out of a polymer resin with speckles casted inside using retroreflective paint.

The experimental procedure was the same but the fringes again were very hazy and

difficult to analyze.

* Speckle techniques are powerful means for the non destructive evaluation and

testing of critical components. They have been used quite extensively in the turbine

industry. These techniques are especially suitable for measuring interior displacements

which is a limitation of most techniques. For all its merits, the technique has its

limitations too. Decorrelation of the speckle patterns is a inherent problem of laser

generated speckle patterns. This can be avoided by using whitelight speckle photography.

White light speckle technique makes it possible to measure displacements at any

predetermined point of the body while avoiding speckle pattern where not required. The

noisy speckle data, which is a inherent defect of all speckle technique can be analyzed

accurately by using a digital filter. Moreover, changing the white light source to an ultra

violet source might improve the fringe pattern as has been observed by some researchers.

3.6 Conclusion

The conclusions that were drawn from the speckle experiments can be summarized as

follows:

* Laser speckle photography can be used to measure displacements on the

surface of a body although decorrelation of speckle patterns is a problem.

• White light speckle photography is able to measure rigid body

displacements on the surf body within 10% accuracy.

• 68



Noisy speckle patterns were observed while analyzing speckle patterns of

* specimens subjected to deforming forces and embedded speckles. This

problem might be solved by a digital filter and by changing the source of

whitelight.

Currently, experiments are being designed using more powerful whitelight sources

and digital filters to analyze the speckle data. The aim is to embed these speckles and

gather displacement information at different interior points in the body.
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CHAPTER 4

PRELIMINARY STUDY OF THE EFFECT OF CEMENTATION

ON

THE DYNAMIC LOAD TRANSFER PHENOMENON

4.1 Introduction

IThis chapter represents a preliminary attempt at studying the effect of cementation

on the wave propagation phenomenon. Dynamic wave propagation has been studied in

recent years for its importance in such diverse applications as dynamic compaction of

* powders, shock forming of modem composites, and in various shock absorbing and

isolating applications. These studies have primarily looked at the particle to particle

interaction of dry contacts. While this may apply to the fore-mentioned applications, the

• study of seismic phenomenon needs to account for other parameters. One of these

parameters is cementation between particles.

Predominantly the studies to date have been based on the classical approach to

* solutions for normal compression of disks and spheres(Johnson, 1985). This approach

addresses the problem by modeling the contact as that between two elastic bodies where

the contact zone dimension varies with varying force. If cementation is considered, the

most significant difference is that the contact zone dimension is fixed by the amount of

cementation and does not vary during the application of force.

In nature there are many instances of cementation be-\een particles. Probably the

* most common example of cementation occurring naturally is sedimentary rock. Man-made

examples include such things as concrete and asphalt. By studying the effect of

* -72



0

cementation on the stress wave, we can gain a greater insight into seismological events

* and structural design. Experimental data and observations are needed as input parameters

for numerical simulations of wave propagation in cemented particulate materials.

Ultimately, safer design and construction will result.

4.2 Theoretical Analysis

The primary analysis technique utilized by this laboratory is an overdeterministic

least square method to determine contact parameters from digitized photoelastic fringe

pattern data. The theoretical equations are based on Hertz contact theory. The equations

for the stresses were given in Chapter 2 but are expanded here to include the friction

factor, f3.

= b

-- f x) (4.1)

IUK br b 2 + 2Z2 + 2X2  4
-'-A b " b (4.2)

+ (X2 2 2 3zý2+ 27tx + 2(b 2  X2 -ý

2 b T2) 2)]

*I 2(2x X2 +b -z.0-2 X0 43

= -±jz%. + ((b2+2 2
+Z). 1 -27-- cz1 (43

•A bb

• The terms ýj and +2 are given by the following
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2

÷,= (M+N/) *2 = r(M -N)

MNV2MN + 2x2 + 2z 2 - 2b2  MNr2MN+ 2x2 + 2z 2 - 2b2

Mi= /(b +x)42 + Z2 N = /(b -xA +z 2

The term A is a parameter that is dependant on the material elastic properties, E and v,

and the radii of curvature of the two objects in contact, and is given in equation (4.4).

2 

2

I* _ I (4.4)

These expressions for the stress field are combined with the stress optic law which

is shown as equation (4.5),

Nfo (4.5)Cy1 - "2 =--- h

* where N is the fringe number, fo is the stress optic coefficient for the material, and h is

the thickness of the specimen.

Twenty data points are used to determine the two unknowns, b and P. Once the

* two unknowns have been found, the half contact width and the friction factor, P, are used

to back calculate the normal and tangential contact loads.

* 4.3 Experimental Procedures and Results

Due to the nature of the cemented contact, static experiments were conducted to

determine whether or not the Hertz contact theory would be valid for cemented particles.

* As mentioned previously, the analysis technique utilized by this laboratory is an

overdeterministic least square technique in conjunction with the Newton-Raphson method
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to determine contact parameters such as normal load, half contact width, b, friction factor,

* fP, and tangential load, based on Hertz contact theory. The theory relates the contact load

to the contact width. Unlike two particles in contact without cementation where the

contact width can vary with the load, cemented particles have a fixed contact width.

* Static photoelastic experiments were conducted using two circular particles, made

of Homalite-100, that were cemented together with a cyanoacrylate based adhesive. The

disks were then loaded in an Instron testing machine and photographs were taken through

a circular polariscope and a monochromatic lens, at various load levels. Fig. 4.1 shows

typical isochromatic fringes for two disks with a cemented contact, under diametral

compression. The top and bottom contacts are Hertz contacts and the disk to disk contact

is the cemented contact.

Looking at the fringes very close to the cemented contact, the fringes show the

effect of the cementation. Further away from the contact the fringes are very similar to

the Hertz fringes. It is this similarity that was hoped to be utilized in later dynamic

experiments.

The disturbance to the fringes at the contact point seems to agree well with the

numerical calculations made by Dvorkin et. aL (1991). The numerical work p. Jicted that

for very stiff cements (stiffness of the cement is expressed with respect to the particle

stiffness) the profile of the force distribution would result in the maximum normal forces

at the edges of the cemented zone. Dvorkin also calculated the normal force distribution

for soft cements. For this case the force distribution was just the opposite, the maximum

normal force would fall in the center of the cemented zone. Fig. 4.2 shows the force

distributions, on the vertical axis, as predicted by Dvorkin. The parameter, m, is the ratio
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of the cement stiffness to the grain, or particle, stiffness. The horizontal axis represents

distance along the particle surface from the center of the contact to the edge of the

cemented region, ie. 0 - b.

Static photoelastic experiments were designed to verify these predictions. The

* disks were machined of PSM-1, a photoelastic plastic, which has a low stress optic

coefficient, f,,. The stress optic coefficient determines the order of the fringes produced

by a given load. The higher the stress optic coefficient, the lower the fringe order seen

* for a given load. (The lower the stress optic coefficient, the higher the fringe order for

the same load.) The PSM-1 was chosen so that under very small loads, an appreciable

:.umber of fringes would still be seen.

0 The experiment called for a uniform loading conditions on both sides of a disk so

three disks were used. The center disk would experience a distributed load on both sides,

while the two outer disks experience a point loading on one side and a distributed loading

on the other. To fabricate the specimens, the cement materials were either cast from a

liquid into the gap between the disks, in the case of the soft cement, or machined from

a solid piece and 'glued' into the gap, for the stiff cement. The procedures will be

described below.

The soft cements were Hexcel urethanes of varying stiffness that were mixed from

two liquid components and poured between the two disks. The disks were adhered, face

down, to a sheet of plastic with the desired gap between them and the width of the

cementation zone was fixed by placing two blocks against the disk edges. The area was

sealed with silicone caulk and the urethane was cast into the resulting cavity.

For the stiff cements, a piece of aluminum was machined into the same shape as
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the cast urethane. The aluminum 'cement' was then bonded to the PSM-1 disks using a

* photoelastic adhesive. The adhesive cures to the same mechanical properties as the PSM-1

and is also optically clear.

Fig. 4.3 and 4.4 show the typical isochromatic fringes obtained for static

* experiments involving large cementation zones and for different cement stiffness. Fig. 4.3

shows the fringes that result when the cement stiffness is very low compared to the disk

stiffness. Notice that the fringes develop from the center of the cemented region. Just the

* opposite is seen for the case of the very stiff cement, Fig. 4.4. The fringes develop from

the edges of the cemented region. Both cases confirm the numerical prediction made by

Dvorkin. These fringes, however, are very different from Hertz fringes. It was seen that

* for cementation zones that were large, 20% of the particle diameter, and 3 mm wide, the

fringe patterns deviated more from the Hertz patterns and Hertz analysis would not be

appropriate.

• 1he photographs from the static experiments using the Homalite-100 disks were

analyzed for both the known Hertz contact and the cemented contact. These experiments

involved a very thin cement layer and also the cemented region was not wide compared

to the particle diameter (the cemented region was 10% of the particle diameter). It was

hoped that the Hertz equations might be valid for some region and analysis could be

performed using the previously ment:,;; Ad scheme.

Typical plots showing the results of the analysis are shown in Fig. 4.5. The plots

show the experimentally determined lIod, normalized hy the Instron load ceil data, vs. the

normalized distance from the contact, i lie normalizing parameter for the distance from

the contact was the half contact width. 1. as taken from the Hertz contact. The data from
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the Hertz contact is shown as solid circles and the dashed lines are the allowable

0 experimental error. The Hertz data shows acceptable values within a region from about

2b to 8b. This agrees well with previous work (Shukia and Damania, 1988).

The data from the cemented contact shows some agreement with the Hertz data

but the band at which acceptable values can be obtained is very narrow. At the highest

load, 2220 N, the data falls within the acceptable error between approximately 5b and 7b.

For lower loads, however, the acceptable region shifts to higher multiples of the half

contact width, b.

The narrowness of the band, as compared to the Hertz data, also raises some

concern. If the valid region for analysis is too narrow and shifts with the applied load, the

usefulness of the analysis technique may be in question. However, it should be noted that

the data presented does not represent a complete study and further work will be done in

this area. An acceptable region may be found that will allow analysis of the isochromatic

fringes.

Following the static experiments, dynamic experiments were begun. A single chain

of cemented particles was placed in the camera and an explosive charge was detonated

to initiate the stress wave. Fig. 4.6 shows typical photographs of the disk chain as the

dynamic wave propagates. From the photographs, the pulse length can be directly

measured and the group wave velocity can be determined. The pulse length is marked in

the figure.

The pulse length, shown in Fig. 4.6, can be seen to be approximately four and one

half particle diameters. This differs from findings reported in earlier work (for example:

Shukla and Damania, 1987) where the pulse length consistently stabilized at four particle
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diameters.

* The group wave velocity was determined by measuring the position of the wave

front at various times and plotting the distance propagated vs. time. Fig. 4.7 shows the

plot for a number of single chain experiments of cemented particles in a vertical

arrangement. The average velocity was determined to be 1240 m/s. This is higher than

the reported velocity for a single chain of particles without cementation by approximately

20%. The velocity for particles without cementation was found to be approximately 1050

m/s.

Fig. 4.8 shows the normalized contact load vs. time for the single chain of

cemented particles. Hertz analysis was used to acquire the load data presented and

identical methodology was used for analyzing each of the contacts. The normalization

removes the quantitative aspects and therefore the plot shows, qualitatively, the effect of

the cementation on the contact load. The plot shows that across four particle contacts,

there is no significant attenuation of the contact load. This matches the results for a single

chain of particles without cementation.

Experiments were also conducted with the particles staggered from the vertical,

by some angle, a. Fig. 4.9 shows the particle arrangement for the staggered configuration.

To date, only two different angles, a = 150 and a = 40', have been used in the

experiments. Fig. 4.10 and 4.11 show the typical isochromatic fringes obtained using

these particle arrangements.

The wave speeds have been determined and are shown in Fig. 4.12. Thesc- velocity

measurements represent the vertical velocity of the wave front as it propagatcs in the

chain. Since the data only represents a few experiments, the reported velocities are still
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considered estimates. The trend however would lead one to believe that the greater the

0 angle, the lower the wave velocity. It is difficult to discuss pulse length in terms of

particle diameters but it is easy to see that the pulse is loading approximately 6 particles

in Fig. 4.10, the 150 angle case, and 5 particles in Fig. 4.11, the 400 angle case.

Notice that there was energy still propagating in the particles (this is most

noticeable for the 400 angle case) after the main pulse had passed. This energy is due to

reflections taking place in the particles and presumably would lead to greater attenuation

of the pulse. Evidence of this can be seen in Fig. 4.11. The magnitude of the fringe orders

seen in the photographs decreases dramatically as the loading pulse travels down the

chain. As complete confidence in the current analysis technique has not yet been

established, no load data will be presented at this time.

Another set of experiments, still in the preliminary stages, is the investigation of

stress wave propagation at angles of 900 and greater from the incident wave direction.

The particles in these experiments were cemented together. Fig. 4.13 shows typical

isochromatic fringes from such an experiment. Note that in previous work by members

of this laboratory (Shukla et. al., 1988) the wave would not propagate at angles of 90' or

greater using uncemented particles.

Fig. 4.13 shows that energy does indeed transfer to the particle chain that is at a

right angle to the incident pulse. A careful look at these photographs reveals that damage

growth has begun in the first disk in the right angle chain. The stress on the contact is

almost entirely shear stress and the damage originates at the edge of the cementation

zone. The origin of the damage coincides well with the numerical predictions made by

Dvorkin (1991) with regard to the maximum stress location for a cemented contact.
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Velocity measurements were also made for the pulse propagating in the near

* vertical straight chain and it was found that the ratio of cementation width to particle

radius, w/r, also has an effect on the velocity of the pulse. The velocity was found to be

higher in this straight chain (w/r = 0.12), approximately 1330 m/sec, than that of the

previous straight chain (w/r = 0.10), 1240 m/sec. The difference between the two chains

was that the ratio, w/r, was higher in the chain with the higher velocity. Further

experimentation will be done to explore this phenomenon.

4.4 Conclusion

Cementation proved to have an impact on the nature of wave propagation

phenomenon. The velocity of the group wave as compared to uncemented contacts

increased by approximately 20%, for vertical chains of particles. This preliminary work

shows that although the group wave velocity and the pulse length seem to be affected, the

contact load does not seem to show any appreciable attenuation in the straight particle

chains.

The effect seen on the group wave velocity would seem to be consistent with the

physical changes made to the medium. The cementation is bringing the particulate

medium closer to a continuous medium and the wave velocity is increasing accordingly.

The change in the pulse length, when compared to uncemented particles, needs to

be explored further. Long chain experiments with strain gages will be conducted to

determine the entire effect.

lhe effect of contact angle, while not complete, would seem to indicate that the

angle affects the velocity, the pulse length, and the load attenuation. One possible
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explanation for the changes to the velocity and attenuation is that the pulse undergoes

* more scattering and dispersion upon encountering particle boundaries.
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Figure 4.2. Plots of normal stress along the cement region as a function of the ratio of cement

stiffness to particle stiffness. (from Dvorkin, 1991)
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Figure 4.3. Typical isochromatic fringes for a PSM-1 disk under diametral compression with
* 'soft' cementation.
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Figure 4.4. Typical isochromatic fringes for a PSM-1 disk under diametral compression with
• 'stiff' cementation.
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Figure 4.6. Typical isochromatic fringes obtained from a single, verticle chain of cemented
particles.
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Figure 4.7. Distance vs. timne plot for dtufcrmination of group wave velocity.
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transfer into the 90' disk chain.
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CHAPTER 5

HYBRID THEORETICAL/EXPERIMENTAL

DETERMINATION OF CONTACT LOADINGS BETWEEN

CEMENTED DISK PARTICLES

5.1 Introduction

The determination of the correct contact law is a key problem in

understanding the dynamic response and wave propagational behaviors of granular

materials. In this regard, our previous research (Shukla, et.al. 1985, 1987, 1988)

using dynamic photoelasticity has been very useful to determine the transient contact

stress field inside model disk particles, and has provided fundamental information to

help develop appropriate interparticle contact laws that have been used in

computational models (Sadd, et.al. 1993). To date our studies have focused on

particulate systems with dry and uncemented contacts. Interest has now developed

into the dynamic behavior of cemented particulate materials, and the purpose of this

chapter is to outline our initial research in establishing a hybrid

experimental/theoretical scheme to determine the dynamic load transfer through such

cemented systems.

Our photoelastic observations indicate that the local contact stress

distributions between cemented disk particles are different from that of Hertzian

contacts. This fact follows from photoelastic experiments, where it is found that the

distribution of local fringe patterns of cemented and dry disks are different.

Qualitatively, for high modulus cements, the maximum order fringe grows from the

two ends of the contacting surface, while soft cements produce an evolving maximum

order fringe interiorly located near the center of the contacting surface, see Figs,

5.1(a) and (b). For the dry case with no cementation (presumed to be Hertzian

contact), the maximum order fringe grows from the center of the contacting surface
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as shown in Fig.5. 1(c). Thus the local stress distributions close to the contact surface

are clearly different between these cases. For Hertzian contact, an elliptical contact

stress distribution is assumed, and the evaluation of the stress field within the

cemented disks can be obtained from classical elasticity theory, (e.g. Timoshenko, and

Goodier, 1970). Results of such a calculation (see Fig. 5.2) indicate that the

predicted maximum shear stresses using Hertz theory are much higher than the

photoelastic data for the case of disks cemented by a stiff material (super glue). As

shown in the figure, the difference reaches 50% at the maximum shear stress point for

the contact loading of 3121b.(1389N).

Dvorkin et al (1991) proposed an analytical model to predict the influence of

the cementation on the interparticle load transfer between . Using elasticity theory

along with particular assumptions of the displacement distribution in the cement layer,

an integral equation for the stress distribution on the contacting surface was

determined. This solution was not in the explicit form and required considerable

numerical calculations to determine the resultant forces between the cemented disks.

Dvorkin et al. determined the stress distributions on the contacting surface for a

special case in which the two cemented disks touch only at the center point of the

contact line. These results show that the contact stress distribution profile changed

significantly when the cement material modulus varied from soft to hard. When the

cement layer is softer than the disk material, the maximum stress in the contact

distribution lies in the center of the contact zone. On the other hand, if the cement

material has a higher modulus than the disk particle, the maximum stress occurs at the

edges of the contact area. Unfortunately, this scheme would not be very useful to be

used with photoelastic data to develop a hybrid method to process dynamic fringe

data to calculate interparticle load transfer.

In an effort to develop such a hybrid scheme, and guided by Dvorkin's results,

various trial normal stress distributions on the contacting surface have been used to
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calculate the maximum shearing stresses within contacting disks. The assumed

contact loading distributions included convex parabolic, elliptical, uniform and

concave parabolic profiles. Comparing the results of these trial contact loadings with

photoelastic experimental data, it was found that the concave parabolic profile

produced an acceptable comparison with the particular data set, see Fig. 5.2. This

contact stress distribution was then used to compute the interior stress field within the

disk, and this information was used to generate contour plots of the maximum shear

stress (identical to photoelastic fringe patterns) as shown in Fig.5.3. It can be seen

that the numerical results closely match the experimental fringe patterns shown in Fig.

5.2(b). These preliminary trial results indicate that particular contact stress

distributions on the cemented contacting surface could be used to determine the

correct stress field within the disk particle. Thus an inverse problem solution strategy

could be established whereby the resultant force between pairs of cemented disks

could be determined from photoelastic experimental data. The present study uses

such an approach to calculate the contact force between two cemented circular disks

using a polynomial family of stress distributions on the contacting surface. The

advantage of this method is computational efficiency and the fact that characteristics

of the cementation need not be known. The information needed are the positions and

the fringe orders of the photoelastic fringes within a contacting disk particle, the

material and geometrical properties of the disk, and the cemented contact width.

Several examples are given to verify the accuracy of this hybrid

theoretical/experimental approach.

5.2 Basic Theory and Methodology

5.2. 1 Classic Theory

From classical elasticity theor\ (Timoshenko and Goodier, 1970), the stress

field for the plane problem of a circul•r disk loaded with a pair of equal and opposite

forces as shown in Fig. 5.4, is given b.x
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where the coordinates are indicated in Fig. 5.4.

The solution for a distributed boundary loading f(pi), as shown in figure 5.5,

can be obtained by integrating the fields specified by equations (5. 1) to get

c, 2{)fsin2¶•cos0i+sin2O2Cos02J + _,o, jl W [ ri " r2 _iuT Io()R~

= J{ ) -- +-e --- f (P) + cos(P Rdq, (5.2)

-a
T" f 2f(q•) jsin0icos20i sin02cos202!., ,,d

Ra = Tri - T2- IV'

The maximum shear stress is given by the well-known result

Equations (5.2) and (5.3) indicate that T. can be calculated if the boundary

loading distribution function f((p) and angle a are known. These parameters are

directly related to the stresses transmitted to the disk particle from the cement layer.

5.2.2 Contact Stress Distribution

Dvorkin el al. (1991) studied the stress distributions at the surface of two

cemented circular grains for the case with different ratios of cement to grain moduli.

When the cement is soft relative to the particle, the maximum shear stress takes place

in the centei o" the contacting surface, but when the cement is stiff the maximum

shear stresses occur at the ends of the contact surface. Based on these results, it is

assumed that all contact stress distributions could be represented by a family of
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polynomials containing several parameters to provide the appropriate shape for the

cement/particle moduli under study. Such a stress distribution polynomial can be

written in the following form

f ((P)= P1l+(m -1) ](5.4)

where P is the stress at the center of the contacting surface, m is the ratio of the

center to the edge stresses, and n is the power of the polynomials.

If the parameters n and a are fixed, and the resultant force between the disks

is held constant, the parameter m will dominate the appropriate shape of the curve

(see Fig. 5.6). If m = 1, the distribution is uniform; for m > 1, the curve is concave;

and m < 1, the curve is convex. Therefore, the loading shapes available with thisf(pi)-

family approximately coincide with the results obtained by Dvorkin for various

cement/particle moduli. The stresses within the disk particle that are determined by

using the above contact stress distributions are very close to the experimental data. If

all the parameters in the polynomial are given, the resultant force on the surface is

determined by integrating the polynomial over the surface, i.e.

F, = 2f f(p)Rdp = 2PoR m+n (5.5)
0 tn+ 1

5.2.3 Numerical Scheme

Substituting the equation (5.4) into (5.2) and (5.3), produces the general form

T = 91(P,m,n) (5.6)

which is an implicit expression in terms ofp, m and it.

According to photoelasticity theory, an isochromatic fringe pattern

corresponds to a line of constant maximum shear stress which is specified by

"= f.N (5-7)
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where fo is the material fringe value, N is the fringe order number, and h is the

thickness of the disk particle.

Using these results, an error function g can be defined as

g, T. f 0 N (5.8)
"" 2h

where the subscript k refers to k-th data point. It is desired for this error function to

be reduced to zero; however, applying this equation to actual data and using

approximate analytical models for the calculated stress distributions will yield non-

zero values for g.. In order to reduce this error function to acceptable levels,

numerical schemes have been developed. It has been established (Shukla and Nigam,

1985; McCalla, 1967; Singer, 1964) that by using Gauss-Legendre quadrature, along

with a Newton-Raphson iteration method, a numerical procedure can be constructed

to reduce gk .

Applying these techniques to the current problem involving equations (5.6) -

(5.8), it is first noted that initial estimates of the parameters P, m and n usually will

not make g. =0, and an iterative scheme is required. Equation (5.8) can be written in

the form of a first order Taylor series expansion of g, , i.e.

( AP + ( 4)Ant+ (K ) .An =-(gk), (5.9)

where the subscript i refers to an i-th iteration.

Applying this result to numerous photoelastic data points produces an over-

determined system of equations. Solving this over-determined set produces

corrections AP•, Ant, and An, which are used to improve ti..- parameters through the

relations

P, - = P + AP, ,,,- = ni, + Am, , n, i n, + An, (5.10)

for the next iteration step. This procedure continues until the error difference between

iterations is smaller than a specified controlling value.
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5.3 Numerical Results

A computer code implementing the above procedures has been developed, and

a preliminary numerical investigation has been conducted. Results from the code

indicated that the determination of the resultant cementation forces was not very

sensitive to the n parameter, and in fact values of n from 2 to 6 do not produce any

significant changes in the results. Because of this fact, the n parameter was set at a

constant value of 4, and only the parameter p and m were varied in the iterative

scheme.

Data from several sets of photoelastic experiments were used to verify the

hybrid approach previously described. The cement materials that were used in the

experiments included urethane, super-glue, plexiglas and aluminum, which provided a

variety of stiffhesses. All the model disks were made of polycarbonate. The data

collection was completed by a digitizer that gives the position and fringe order of

each photographic data point. The choice of the data points will affect the accuracy of

the results. Generally one should take more data near the maximum shear stress

points because the variation of these fringe positions with load is more sensitive than

those of other fringes. For the urethane case (soft cement), the fringes were very

thick, see Fig. 5.1(a), and it was difficult to determine the exact fringe orders.

However, estimates were made of the approximate order number and the results

proved to be satisfactory. The resultant forces between the disks were evaluated by

the developed program, and these results are shown in the Table 5.1. Comparisons of

the computed contact load transfer are made with the experimentally measured

values, and the relative errors for all cases are less than 10%.
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5.4 Summary

According to the theoretical results and experimental data, there are local

differences between the contact stress fields of cemented disks and those under

Hertzian dry-contact. In the neighborhood near the contacting surface, the Hertzian

contact does not accurately predict the proper internal stress distribution. Because of

this a new hybrid scheme has been developed using non-Hertzian contact mechanics.

This technique uses a family of contact loading polynomials to approximate the actual

load transfer between cemented particles. It has been demonstrated that these loading

polynomials produce reasonably accurate stress fields which match with experimental

photoelastic data, and can be incorporated into an inverse hybrid scheme whereby

photoelastic fringe data can be used as input to a computer code in order to determine

the interparticle load transfer. The polynomial family of contact stress distributions

can cover a broad variety of cement types of various moduli ranging from soft to

hard. The accuracy of the calculations appeared to be satisfactory as differences

between numerical and experimental load transfers were all less than 10%. Further

verification of this technique will be done on additional data.
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TABLE 5.1 Comparison of the Exper ental and Numerical Results

Case I Urethane Case 2_Super-Glue Case 3 Plexiglas Case 4 Aluminum

Exp.* Num* Err. Exp.* Num* Err. Exp.* Num* Err. Exp.* Num* Err

200 192 4.0% 267 268 0.3% 95 100 4.3% 91 97 6.0%

222 217 2.4% 690 642 7.0% 191 204 6.5% 134 138 3.0%

1291 1293 0.2% 270 293 8.5% 181 191 5.1%

1389 1387 0.1% 357 380 6.6% 225 221 1.7%

1772 1811 2.2% 447 481 7.5% 270 280 3.6%

1905 1968 3.3% 537 573 6.6% 314 332 6.0%

2226 2367 6.3% 629 646 2.8% 359 378 5.3%

722 751 4.1% 407 422 3.8%

812 855 5.4% 448 453 1.2%

* All load units are in Newtons.
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Fig,5.1 Photoelastic Fringe Patterns of Disks in Contact

103



0

• •Stress distribution

0 X

Y R

(a) Coordinate System and Loading Geometry

(F=312 lb.)

3.174 - Parabolic
3.042
2.909
2.777 Elliptic
2.645
2.513 Uniform

S2.380
2.248
2.116

54 1.984 Inverse parabolic

1.851

1.587

* 0.793 ;,

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

y/R

(b) Maximum Shear Stresses Along y-axis of the Disk Cemented by Super-Glue

Fig. 5.2 Comparison of the Maximum Shear Stresses

*-j 0j4



0

-+ +

0••0

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Fig.5.3 Contour Plot of the Theoretical Maximum Shear Stresses in Disk

P

o *p

ýjr•
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CHAPTER 6

PRELIMINARY STUDIES OF DYNAMIC LOAD TRANSFER

THROUGH SATURATED GRANULAR MEDIA

6.1 Introduction

Preliminary microstructural modeling efforts have been conducted to investigate the

effect of pore fluid in granular and particulate materials. The emphasis in this segme )ur

program is to establish reasonable models of the local microstructural interparticle -. -,aact

effects associated with pore fluid, and to relate these effects to the wave propagational

characteristics through model granular materials.

Our efforts in modeling the dynamic response of such fluid-saturated particulate

materials have used the discrete element method. This computational method has shown to

be very useful to model the response of discontinuous and particulate materials by studying

the behavior of individual idealized particles in assembly systems. For applications to wave

propagation, this scheme employs large assemblies of idealized particles to model the dynamic

behavior of granular materials. Numerous studies by Sadd, et.al. (1989, 1991 and 1993) have

shown that such modeling techniques can simulate granular materials and predict results

which compare with experimental data. The numerical strategy uses Newtonian rigid-body

dynamics to calculate the translational and rotational motion of each particle in these model

assemblies. In this fashion, the dynamic/acoustic response of the model system may be

determined, and parameters such as wave speed and amplitude attenuation can be calculated

for specific model assemblies. Furthermore, these wave propagatý al characteristics can be

related to the model material's microstiructure or fabric.
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Of fundamental importance for the proper application of this numerical scheme is the

development of correct interparticle contact laws which predict the contact forces between

adjacent particles in the assembly. These laws play a key role in determining the constitutive

response at the micro-level. Much of our beginning work focussed on developing new

contact models for particles interacting with each other through a fluid. The presence of pore

fluid can have significant effects on the dynamic response of granular materials by adding

viscous drag forces on particles and by changing the contact response between adjacent

particles through squeeze-film elastohydrodynamic action.

6.2 The Discrete Element Method

As mentioned, the discrete or distinct element method is a modeling strategy which

uses Newtonian rigid-body mechanics to model the translational and rotational motion of

particles in model material assemblies (Figure 6.1). Contact laws between adjacent particles

are constructed which serve to determine the contact force as a function of the relative

displacement or relative velocity between the particles. Applying Newton's law to the i-th

particle would yield

0N

F0 + F• M m , (6.1)
1- 1

where F(iU are the j-contact forces on the i-th particle and F") represents any non-contacting

forces (e.g. viscous drag). Equation (6.1) would then yield the particle acceleration with

given contact and non-contact forces. The technique establishes a discretized time stepping

numerical routine, in which granule velocities and positions are obtained from numerical

integration of the computed accelerations. It is assumed that during each time step,

disturbances cannot propagate from any particle further than its immediate neighbors. Undcr
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these assumptions, the method becomes explicit, and therefore at any time increment the

resultant forces on (and thus the accelerations of) any particle are determined solely by its

immediate neighbor interactions. In wave propagation applications, the movements of the

individual particles are a result of the propagation through the medium of disturbances

originating at particular input loading points. Consequently, wave speed and amplitude

attenuation (intergranular contact force) will be functions of the physical properties of the

discrete medium, i.e. the microstructure. Figure 6.2 illustrates a typical flowchart of the

discrete element method. In order to model particulate materials, the method is typically

applied to granular systems containing large numbers of idealized particles (e.g. circular disks

or spheres) in regular or random packing geometries. Such model materials can be

computationally generated with varying degrees of microstructural fabric and pore fluid

content.

6.3 Contact Laws for Particles in Saturated Media

Our modeling efforts began with the development of new contact laws governing

particle interactions through a fluid. As mentioned, the presence of pore-fluid will create

several new forces at the particulate level. For saturated conditions, capillary forces from the

pore fluid would be negligible; whereas the phenomena of viscous drag and squeeze-film

contact lubrication could produce sizeable particulate forces. Viscous drag effects would be

predominant for large particle motions with significant inter-particle spacings where

neighboring interaction forces are vanishingly small. On the other hand, squeeze-film contact

forces would be the most significant for dense packings of particulate systems, and this case

is the situation to be studied.

In order to model this squeeze-film effect, consider the case of two particles
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(approximated as two circular disks) embedded in a viscous fluid, and approaching each other

with a relative normal velocity V(t), see Figure 6.3. The fluid film in the contact zone will be

squeezed, and a sizeable pressure is thus built up in this contact region. The fluid pressure

distribution in the gap will exert a loading on each particle surface, and this loading is

sufficient in certain cases to produce significant particle deformation. In this fashion, the

contact law governing particle interactions for saturated granular materials changes

considerably from the contact mechanics for dry materials. The saturated case is more

complicated since it involves a coupling of both fluid and solid behaviors.

The contact force for such a problem can be modeled using the theory of

elastohy&*odynamics e.g., Cameron (1967) and Gohar (1988). The schematic of the two-disk

squeeze-film problem shown in Figure 6.3 describes the problem geometry. The distance

between particle surfaces is denoted by h(x,t), a function of coordinate x and time t, and 6(xt)

is the granule deformation. Under certain assumptions the fluid pressure p(x,t) can be related

to h(x, t) by the Reynolds equation of lubrication theory

a-(hOP) = 121 (6.2)

ax a a6x

where '1 is the viscosity of the fluid.

Since h(x,t) can include particle deformation 6(x, t) which is determined by elasticity

theory, equation (6.2) is a coupled relation, and typically an iterative numerical method would

be required to solve this equation for the pressure distribution p(x,). Incorporating such a

numerical scheme into the discrete element method would result in a very computationally

intensive procedure, and would therefore result in unreasonable amounts of CPU time to run

the simulations. Therefore a simplified alternative procedure was developed in order to avoid



the numerical complexities. This simplified approach first assumes that the particle is rigid,

and this allows a closed-form solution for p(x,t) from equation (6.2). Once this pressure

distribution is found, the particle deformation may be calculated from simple Hertz contact

stress theory, and this new particle shape may be then used to calculate a new pressure

distribution. Thus initially let 6(xt) = 0, and the undeformed particle surface can be

approximated by the relation

2

h(x,t) Ot) + - (6.3)2R

where R is the particle radius. The solution to the Reynolds equation (6.2) for this case is

found to be

p(x4t) 6R• - (6.4)
h2(x,t)

With the pressure distribution known, the total contact load between the particles is given by

integrating the pressure, i.e. F = H f pdx, where H is the disk thickness. Carrying out the

integration over the disk surface yields

Fjt) = 3v/.tH R ) 3 K (6.5)

In order to include the effects of particle deformation, a combined model with two,

series-connected stiffhess (spring) elements may be used. One spring element represents the

fluid stiffness while the other element includes the solid (particle) stiffness resulting from the

elastic deformation within the particle. The pressure loading will produce deformations such

that the distance between particle surfaces will change from h to h(x,t) + 6(x, t), where c6(x, t)
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is the contact deformation for the dry case. If the disk shape is assumed to be unchanged, then

the new load F(I) is still given by equation (6.5) using the modified value of h(x,), i.e.

,R6 = 3F2zqtH( R ) 3/2 (6.6)h(0,0+ 6

In dry granular materials, our previous research has indicated that the normal contact

force F can be related to contact deformation by the relation F = K6 14, where K is a

material constant. Obviously the forces in the fluid and solid springs should be equal, and

this leads to the result

3V02, t TH( R -- K6)'s (6.7)

where on the right-hand side, the exponent on 6 has been modified for convenience to the

value of 1.5. Solving equation (6.7) for 6 and substituting the result into equation (6.6) yields

R0t) C , Kt)

0.5 h(0,0) + h2 (0,t) * 4 (x )2/3)

where C, = 3V21T) RYH. Equation (6.8) then gives the normal contact force when two disks

approach each other. For the case when the two particles move apart, contact law (6.8) is

not suitable since a negative velocity V, may lead to a negative value within the square root.

For this case the solid contact law will be us,',,

The above results address only the normal contact response between particles. For

the tangential contact behavior, a simple modeling scheme based upon the simple shearing of



a Newtonian fluid is applied within the small interparticle gap as shown in Figure 6.4. If the

gap is small then the fluid motion may be approximated by a linearly varying distribution (see

Fig. 6.4a), and the resulting shear stress between the particles will then be given by

A- V ___(6.9)

az Az h

where U is the relative tangential velocity between particles. Thus the force between any two

generic particles can be estimated by the product of this shear stress times an effective area

within the gap zone. We are currently experimenting with various schemes to determine

appropriate effective areas for the calculation of the tangential force.

Although this simple scheme provides reasonable estimates, it will break down if the

interparticle gap becomes small. For this case, the spacing parameter h will be very small, and

thus the velocity gradient and hence the predicted shear stress will become quite large.

Therefore this model will predict unreasonably high values of the interparticle tangential load

transfer. This situation has been studied previously by the lubrication community, and it has

been found that for very small gap widths, the assumption of zero slip conditions is not

satisfied. Previous studies have found that it is necessary to introduce a slip velocity, V, to

account for the fact that fluid particles will not adhere to the solid particle surfaces. This

situation is shown in Fig. 6.4b, and the effect of this slip velocity is to lessen the severe

velocity gradient within the gap. This modeling approach will control the predicted tangential

load transfer, and we intend to formulate this scheme into the wave propagation DEM code

6.4 Results

In order to investigate the merit of the proposed modeling scheme, several one- and

two-dimensional material models were created, and the discrete element computer code was
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then applied to each of these models under specific dynamic loading conditions designed to

simulate geoacoustic wave propagation.

6. 4.1 One-Dimensional, Single Chain Simulations

The previously described contact law has now been incorporated in our basic discrete

element computer code. Preliuminary computer runs have been conducted in order to simulate

the acoustic wave propagation in an one-dimensional granular material simulated by a single

straight chain of circular disks as shown in Figure 6.5. Considering the modeling of a coarse

sand, the circular particles had a diameter of 2mm, thickness of 1mm, and were assumed to

be of quartz with a density of 2650 kg/m3. The simulations incorporated different gap

openings (of the order of one micrometer) between each neighboring particles, and the model

system was assumed to be completely saturated with water of viscosity of 0.0008 N-s/mr.

The input loading applied to one end of the particle chain was taken to be a triangular time

dependent pulse of duration 2.5pts with a peak value of 4N to simulate a wave front acoustic

pressure of 106 N/mr (i.e. 10 bar).

Using these parameters, a computer simulation was run and the wave attenuation

results are shown in Figure 6.6. It was found that the attenuation is quite large during the

passage through the first several particles, but then the attenuation rate decreases with the

propagational distance. These preliminary simulations indicated that the wave speed was

approximately 840 m/s. The effects of the gap distance and viscosity on the wave speed was

also investigated, and these results are shown in Figure 6.7. As expected, the wave speed

decreases with the gap distance, and when the gap is small, thw--c effects are rather

pronounced. An increase of fluid viscosity also leads to a decrease of the wave speed, and

again this variation was most severe for the case of small gap distances.
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6. 4.2 Two-Dimensional Simulations

In order to investigate the use of the model for a multi-dimensional simulation, a two-

dimensional granular model assembly was generated. The assembly, shown in Figure 6.8 was

created using one of our computational random media generators. These generating codes

can create large random particulate assemblies with varying degrees of microstructural fabric

such as porosity, coordination number, particle contact normal and branch vector

distributions, void vectors, etc. Dynamic input for wave propagation was created through

simultaneous loading of particles along left and bottom edges of the assembly as shown.

Input loadings were applied with identical magnitude and time history as used in the one-

dimensional simulations. The transmitted wave output (measured by the inter-particle contact

forces) was collected among the particles along the right and top sides of the assembly, and

thus this technique can provide comparisons of horizontal and vertical wave propagational

behaviors.

In order to correlate material microstructure to the wave propagational behaviors, the

branch vector distribution of the assembly in Fig. 6.8 was computed. The branch vector is

a commonly used microstructural fabric measure that relates the relative positions between

particles. It is defined as the vector drawn between adjacent particle mass centers, and Fig.

6.9 illustrates a polar rose diagram plot of this distribution for the assembly of Fig. 6.8. It can

be observed from the distribution plot that this model material system shows preferred

directions (anisotropy) with more branch vectors distributed in the horizontal direction than

in •!1, vertical. Thus we would expect more wave transmission for the horizontal loading

case.

Discrete element simulation results of the wave propagation through this assembly are
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shown in Figure 6.10. Normalized average wave transmission through the assembly for the

horizontal and vertical loading cases are illustrated. The vertical scale represents the average

of all interparticle load transfers at the output side of the assembly normalized with respect

to the input. These results indicate that the wave transmission is clearly related to the

anisotropic fabric of the model particulate material in that less wave attenuation occurs for

the horizontal propagation case. Figures 6.11 and 6.12 show vertical and horizontal

propagation results of the same model material for the case with different inter-particle gap

spacing. It can be observed that with an increase of the gap spacing, attenuation will increase

while propagational speed will decrease. These results are consistent with our one-

dimensional simulations.

Future work with saturated systems will include improvements in the basic inter-

particle modeling and we intend to conduct an e:, tensive series of computer runs to establish

more specific relationships with fabric and wave propagational behaviors.
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CHAPTER 7
I

INFLUENCE OF PARTICLE SHAPE ON THE

DYNAMIC LOAD TRANSFER PROCESS

A preliminary investigation was conducted to study the effect of contact profile

and granular media porosity on inter-granular load transfer, wave velocity, and

wavelength of a stress wave propagating through the granular media subjected to

explosive loading. Dynamic photoelasticity, the combination of high speed photography

and photoelasticity, was used to study stress wave transmission through the granular

media that were simulated by assemblies of circular or non-circular particles in contact.

The photographs thus obtained were analyzed to determine contact load as a function of

time, wave velocity, and wavelength. Specimens were made of Homalite-100, an optically

birefringent material. Since some of the specimens were not circularly symmetric,

experiments were conducted with the specimens oriented both with the major physical

feature toward the incoming pulse and away from the incoming pulse. The results indicate

that contact profile and media porosity have an effect on wave velocity and wavelength.

7.1 Introduction

Several investigations have previously been conducted by many researchers to

study the dynamic behavior of granular media. The load transfer characteristics, wave

velocity, and wave dispersion for various loading parameters and microstructure of

granular media have been studied in detail. The effect of particle shape on wave

propagation has been studied by Shukla et.al (1991) using elliptic particles. They showed
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that the wave velocity was dependent on the particle shape. The wavelength of the stress

wave pulse showed no change with the particle shape as long as the contact interval ( the

number of contact points per unit wavelength ) is kept constant. The load transfer

characteristics change with variations in particle shape. However, in most of the past work

the granular media was simulated by assemblies of circular or elliptical discs. All contacts

were therefore between two convex surfaces. In real life, some contacts are between

concave and convex surface. The change of particle shape and thus of contact profile

causes the contact stiffness to change. If the radius of curvature at the contact is

increased, while keeping the contact interval constant, the contact stiffness will increase,

and this would imply a higher wave velocity. This may also change the wave

propagation characteristics.

In this work, four groups of disks were used to simulate the granular media. The

interest lay in the investigation of the effect of a concave-convex contact and porosity of

media on the load transfer characteristics, wave speed and wavelength. Specimen

geometric parameters are shown in Table 7.1. The Groups I and 2, as shown in Fig. 7.1,

were also used to study the effect of incident direction on wave propagation

characteristics.

7.2 Experimental and analytical procedure

The method of dynamic photoelasticity was used as the experimental technique

throughout this investigation. This method has been shown by many researchers to be

very efficient in the study of dynamic wave characteristics in granular media (for example

Shukla 1991). As stated earlier, Homalite-100 was chosen to make specimens. To
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fabricate the various particles, one inch diameter circular disks were machined into the

geometries shown in Table 7.1. A cooling system was used during machining of the

specimens to avoid producing any heat related residual stresses in the specimens.

The granular media was simulated by single chain assemblies of similarly shaped

particles in contact. One such setup is shown in Fig. 7.1 (a). The same shaped particles

were also used in an alternative setup, as shown in Fig. 7.1 (b), to investigate the effect

of incident direction of the wave pulse on the propagation characteristics. The six

different single chain assemblies used in this study are shown in Fig.7.2.

The experimental models were placed in the optical bench of a high speed Cranz-

Schardin type camera. The particles were loaded by exploding a small amount (10 mg)

of Lead Azide in a specially designed charge holder. The camera was triggered at some

prescribed delay time after igniting the explosive that was placed on top of the model (see

Fig. 7.1). The high speed photography system operated as a series of high intensity,

extremely short duration, pulses of light and provided twenty photoelastic images at

discrete time during the dynamic event.

A typical sequence of six images for the single chain setup is shown in Fig. 7.7.

These images of the propagation phenomenon were enlarged and digitized to facilitate

analysis. The Hertz stress field equations along with the stress optic law (see Chapter 4)

were used to calculate the contact load at a particular contact point and time by applying

the multi-point, non-linear least square method suggested by Shukla and Nigam(1986).

The wavelength of the stress wave pulse can be measured directly from the photographs

of the wave propagation process (Fig. 7.7). The propagation distance is plotted as a

function of time to obtain the wave velocity.
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7.3 Results and discussion

To understand the effect of particle shape on wave velocity, wavelength and load

transfer characteristics, a series of experiments were conducted with the experimental

arrangement shown in Fig. 7.1.

Figs. 7.7 and 7.3 show typical isochromatic fringe patterns and average velocity

of the stress pulse for chain 1 (see Fig. 7.2) respectively. Likewise, the fringe patterns

and average velocity for chains 2, 3 and 4 are shown in Figs. 7.8, 7.9, 7.10, 7.4, 7.5, and

7.6.

The average velocities of stress pulse for chains 1 and 2 ( contact between convex

and flat surfaces ) were determined to be approximately equal, 1010 m/s and 1020 m/s

respectively ( see Figs. 7.3 and 7.4 ). This shows that the incident direction of

propagation has no effect on average pulse velocity for this particle shape. Figs. 7.5 and

7.6 show that the average velocities of stress pulse for chain 3 and 4 ( contact between

convex and concave surfaces) are 1140 m/s and 1100 m/s respectively. This indicates

that the incident direction of propagation also has no effect on average pulse velocity for

this particle shape. The stress pulse velocity in chain 3 and 4 is 10% higher than that in

chain 1 and 2. This can be explained by the fact that the contact stiffness between convex

and concave surfaces is higher than that between convex and flat surfaces.

Compared with the pulse velocity in one inch diameter circular disk chain, the

wave velocity in chain 3 and 4 is slightly higher because of larger contact stiffness.

However, the wave velocity in chain 1 and chain 2 is slightly lower than that in one inch

diameter circular disk chain despite the larger contact stiffness. The reason for this is the

increased number of contacts per unit length in chains 1 and 2 as compared with a one

127



inch diameter circular disk chain.

Typical isochromatic fringes obtained from various experiments involving single

chain assemblies are shown in Fig.s 7.7, 7.8, 7.9, and 7.10. The wavelengths for chains

1,2,3, and 4 were directly measured from these Figs. and are shown in Table 7.2. The

pulse lengths for chains 1 and 2 were found to be equal. Chains 3 and 4 also produced

equal pulse lengths. This would lead one to believe that the incident direction of

propagation has no effect on the pulse length. It was also noticed that wavelengths of

chains 1 and 2 were larger than those of chains 3 and 4. The pulse lengths of chains 3

and 4 were nearly four disk lengths. This difference in pulse lengths may be the effect

of contact profile. Fig. 7.10 also shows that the fringe patterns tend to take the shape of

the particle as the stress wave travels through it. This phenomenon also can be seen in

elliptical disk experiments. (Shukla 1991)

Data collected from fringe patterns in Figs. 7.7, 7.8, 7.9, and 7.10. was used to

calculate contact load. The contact load variations with respect to time, for different disk

chains are shown in Figs. 7.11, 7.12, 7.13, and 7.14. The contact loads have been

normalized with respect to the peak contact load between particles 5 and 6. This

normalization allows for easy comparison between different experiments.

Normalized contact load plots provide information about load attenuation as the

stress wave travels from contact to contact. They also provide information about the

duration of contact. Figs. 7.11, 7.12 and Figs. 7.13, 7.14 show that load duration for flat

particles was slightly longer than that for concave particles. The reason is that the concave

particle chain has higher wave velocity and shorter wavelength than fiat particle chain

has.
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Figs. 7.15 and 7.16 are the average velocity plots for chains 5 and 6. If we define

the porosity, -I, as in equation (7.1),

area of hole

area of disk

the velocity plots show that when 'i increases, i.e. the hole is made larger, the average

velocity decreases. Compared with the wave velocity in circular disks, the average

velocity changes very little for small values of %1, i.e. a very small hole. It appears that

there may be a threshold at which the size of the hole becomes a significant factor in the

pulse velocity.

From Figs. 7.17 and 7.18, the fringe pattern becomes distorted because of the

boundary effects produced by the hole. When the pulse was first entering a disk with a

hole, and the contact load was still relatively small, the fringes appear Hertzian in

shape(see Fig. 7.17, Frame 9). As the load increases, the fringe patterns show the

boundary effects(see Fig. 7.16, Frame 13). Because of the boundary effects, Hertz contact

equations cannot be used to analyze the data.

Fringe patterns in Figs. 7.17 and 7.18 show that a lot of energy remains in the

disks after the main pulse has already passed through. Photoelastic experiments cannot

be used to measure the wavelength exactly due to the limited field of view provided by

the optical equipment.

7.4 Conclusions

The results indicate that:
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* The contact profile has some effect on wave velocity and wavelength. But,

the difference between the wave velocities for various geometries was only

10%. Therefore, more data are needed 'o make a conclusive statement.

* For the same contact profile, the incident direction of propagation does not

appear to change the wavelength.

* The porosity of granular media changes the wave velocity. The wave

velocity decreases as porosity increase.

Most importantly, the experiments that have been conducted in this area are in the

preliminary stages and further study needs to be done to obtain any conclusive results.
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* Table 7.1 Geometric parameters for different particles used in the experiments.

Group No. Specimen R1/D1 (inch) R2/D2 (inch) h (inch)
Geometry

0.5 infinite 0.25

URP

* 0.5 0.625 0.25

2 1
RI

3 0.25 NA

10.365 NA

* 4

Table 7.2 Experimental result of wave velocity and wavelength for concave and flat

particle
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media have been presented at the American Geophysical Union - 1994 Ocean

Sciences Meeting in San Diego, California last February.

1

• 151


